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Abstract

In both computer graphics and computer vision, scenes and objects must be represented mathemati-

cally in some way. Representations tailored to ease scene acquisition in vision, may be inefficient to

render. Likewise, models designed specifically for efficient rendering may be difficult, if not impos-

sible, to capture from cameras. In this thesis, we explore potential graphical models which are both

convenient to acquire from images, and well suited for real-time rendering using modern graphics

hardware.

Our representation is a hierarchical hybrid image/geometry based model for graphics objects and

scenes. Each of three scales of detail macro, meso, micro is represented differently in an attempt to

most efficiently store, render and capture the model. Macro scale is the large scale or overall shape,

which we represent using a low-resolution polygonal mesh. Meso scale detail, which is defined

loosely as lying between macro and micro, is represented using displacement mapping, for which

a novel hardware accelerated rendering algorithm is presented. At the micro scale, light-surface

interaction properties are represented using a parameterized texture mapping technique called dy-

namic texture, where a linear texture basis is precomputed from example images and blended when

rendering to reproduce different lighting conditions.

A system was built and used to capture this type of model from real-world objects, which were

then rendered, and integrated into virtual scenes. Additionally, experiments were performed which

evaluate each subsystem independently.
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Introduction
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The level of detail attainable by real-time rendering engines is quite incredible, and increasing

at an astounding rate. Texture mapped triangles have been, and for the most part still are, the basic

geometric primitive with which these detailed scenes are modeled. However, it is beginning to

become clear that the continued increase in triangle mesh resolution is no longer the most efficient

way to increase the realism of such scenes. The main reason for this is that rendering hardware

has evolved such that most of the processing power power is available at the pixel level. Simply

increasing geometric resolution does not take full advantage of this hardware.

Recently, video game engines have begun to diverge from the philosophy that more triangles

necessarily make a more realistic image. The Doom III enginefrom ID software, for example,

is heavily focused on realistic shading using per-pixel lighting and bump-mapping on nearly all

surfaces, and extensive dynamic shadowing [28]. While using relatively few polygons, the realism

achieved by this game is very impressive.

When graphics models are acquired from real world scenes andobjects for the purposes of

efficient rendering, the same principles should apply. Although it may be possible to capture an

entire object or scene geometrically with 100 micron precision using a laser scanner, it would be

both difficult to perform the scan, as well inefficient to render the resulting model. Instead, using

image data for smaller scale details can be a more effective use of acquisition time, memory, and

rendering time. Image data could be not only in the form of basic texture-mapped images, but also

various other image-based representations, such as the parameterized textures that we will describe

in Chapter 4.

Pure image-based rendering methods take this even further suggesting that entire scenes or ob-

jects can be represented solely by image data, but this requires very many images in the same way

that pure geometric models require so many polygons. Clearly, modeling absolutely everything with

polygons is not particularly efficient, but it is also problematic to model scenes entirely with images;

it seems that some mix of geometric and image-based models would be most efficient.

There are three scales that are often discussed separately in computer graphics, as they can be

most efficiently rendered in different ways: Macro, Meso, and Micro. This is similar to how, in

physics, problems of a certain scale, like the trajectory ofa baseball, can be solved with a simple

formula (a mathematical model), but when the same problem isscaled up to the trajectory of a

planet, a more complex model is required. We will illustrateeach scale, by referring to how one

would model a brick wall.

Themacroscale is the largest scale, and corresponds to the overall shape of the object, such as

a single rectangle for our brick wall. This scale is most often represented with polygons, as it will
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continue to be in this thesis. Other possible structures formacro scale modeling are parametric and

implicit curved surfaces [18].

In the middle, we have themesoscale. At this scale, we model the details like the indentations

between bricks, imperfections and cracks in each brick etc.This scale is not strictly defined: the size

of so called details could vary significantly depending on the application. Most current rendering

engines mainly use bump mapping to render details of this scale, which approximates the effect

of small bumps using only shading [2]. Some more advanced techniques, which will no doubt be

used in future engines, include self shadowing bump mapping[40], parallax mapping [55], and

displacement mapping [9].

The micro scale is the smallest scale, and represents how light interacts with the surface at a

microscopic level. This means, given an input light direction, color and intensity, what light color

and intensity is emitted toward the camera. This is a function called the Bidirectional Reflectance

Distribution Function (BRDF). Methods for simulating thiscomplex physical process vary widely.

The simplest, and thus most common, real time methods use some parameterized lighting equations

such as Phong or Lambertian [48]. Although efficient, these equations are approximate, and it can be

difficult or impossible to tune the parameters and achieve a desired result. It is possible to compute

an approximate BRDF from a set of images, but it is quite difficult, since this is a function of five

dimensions: incoming and outgoing light direction, each ofwhich have two degrees of freedom,

and light wavelength (which is generally ignored). Acquired BRDF representations may be either

approximate, or inefficient to store and render, so the use ofsuch models has remained primarily a

research area, and has not yet made it’s way into commercial systems.

In this thesis, we will present a tiered model which is designed considering both model acquisi-

tion from images and efficient real-time rendering. Our system represents each of the macro, meso,

and micro using different data structures, each of which canbe acquired reasonably from images or

other sources. The method balances well the efficient use of commercial rendering hardware with

the ease of automated model construction.

We represent the macro scale using a triangular mesh. Two methods are described in Chapter 3

that we have used for acquiring low resolution meshes from images. Structure from motion (SFM)

uses feature correspondences over a sequence of video frames to extract scene geometry with no

camera calibration required. Shape from silhouette (SFS) is a very robust algorithm which uses

an object’s silhouette in multiple views combined with calibration information for each view to

compute thevisual hull, an approximation to the object’s shape.

Meso scale structure is represented in one of two ways. In ourfirst system, we use a texture pa-

3



rameterized by viewing direction.Dynamic Texturesare used to store and render the parameterized

texture efficiently as shown in Chapter 4. Although this method works well for very small geometric

details, it becomes less efficient with more reasonable mesoscales, and large ranges of viewing an-

gle. The second system stores geometric details in a displacement map: a texture image where each

element encodes the distance from the macro scale approximation to the true object along the sur-

face normal at that point. The displacement mapped surfacesare rendered using a novel algorithm

for per-pixel hardware accelerated displacement mapping which is described in Chapter 5.

Finally, the micro scale or surface reflectance model is represented usingDynamic Textures.

Here, we parameterize a texture in terms of lighting conditions. This type of texture variation can

be represented very efficiently by modulating a basis of images. We sample large range of lighting

conditions, but compress the information down into a small texture basis. In Chapter 4, the technique

is discussed in detail.

Figure 1.1: Overview of how the Macro, Meso, and Micro scalesare represented, and resulting
renderings

Two systems were developed. One using a 2 tiered system basedon a polygonal mesh combined

with dynamic textures. The other has three tiers, combininga polygonal mesh with displacement

mapping and dynamic textures. These systems are presented in Chapter 6. In addition, each tech-

nique has also been evaluated individually with experiments shown in their respective chapters.
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Thesis Contributions

Parts of this thesis were published in seven papers and presentations in SIGGRAPH [58], Euro-

Graphics [56, 27, 7], IEEE Virtual Reality [4, 8], and the IEEE International Conference on Robotics

and Automation (ICRA) [57].

• Several hardware accelerated dynamic texture rendering algorithms were developed and im-

plemented on various examples of consumer graphics hardware. (Section 4.5).

• Techniques for the acquisition and storage of dynamic textures were developed. (Chapter 4

and Section 6.1).

• An easy-to-use system was built for acquiring dynamic textured models from only 2D images

(Section 6.1).

• A plug-in was built for AliasWavefront’s Maya 3D modeling package. This allows users to

render and animate our dynamic textured models alongside conventional models. (Section

4.6)

• A novel displacement mapping algorithm was designed for modern graphics accelerators and

implemented in hardware as a fragment program (Chapter 5).

• A hierarchical graphical model was designed as the combination of geometry, displacement

mapping, and dynamic texture. (Chapter 1)

• A system was built to acquire hierarchical models of objectsand efficiently render them (Sec-

tion 6.2).
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Chapter 2

Review: Graphics Modeling
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In computer graphics, mathematical models of the world are required in order to generate syn-

thetic images of it. Traditionally, scenes have been represented by a variety of geometric primitives

such as polygons or curved surface patches. Building these geometric models manually can be time

consuming, even for experienced artists. More recently, building geometric models automatically

from images, or even working with models defined by images, with no explicit associated geometry

has become a popular area of research known as image-based modeling and rendering (IBMR). Al-

though commercial graphics software is still largely focused on geometric models, different forms

of image data, such as texture maps, has been slowly making its way into the traditional graphics

pipeline.

In this chapter, we very briefly describe conventional methods used for modeling graphics

scenes. Although we attempt to provide some context in the area of computer graphics model-

ing, we do not go into extreme detail. For a more complete overview of image-based and geometric

models, respectively, see [18] and [5].

2.1 Conventional Models

Traditional graphics models represent the world as some setof geometric constructs. The geometry

is rendered by simulating or approximating the physical processes that occur when a real photo

taken.

2.1.1 Polygonal Models

The most commonly used geometric model is the polygonal mesh. Surfaces are represented by a set

of connected polygons. 3D graphics accelerators and ray-tracing software generally focus on effi-

ciently rendering triangles, so any higher order polygons in a model are usually triangulated before

rendering. For the same reason, curved surfaces are often sampled discretely and also rendered as

triangular meshes.

Polygonal meshes are often used as piecewise planar approximations to smooth surfaces. For

lighting purposes, it is assumed that the normal to the true surface is computed by interpolation

(either spherical or linear) of the surface normals at polygon vertexes. Vertex normals can be de-

rived from the function defining a curved surface, but if sucha function is unavailable, they are

approximated by a weighted average of all polygons containing that vertex.

7



2.1.2 Curved Surface Models

Curved surfaces can be represented as implicit or parametric functions.

Implicit surfaces are of the formS(x, y, z) = 0. It is simple to represent a sphere, torus, cylinder,

or other geometric primitives in this way. More complex shapes are usually generated by CSG

(Constructive Solid Geometry) operations between primitives such as union, intersection, etc. CSG

operations are simple to implement with implicit surface models, making them popular with some

modeling software. However, rendering these surfaces is not so simple. With ray-tracing, it is

possible to simply intersect rays directly with an implicitsurface by solving a system of equations,

but it is not necessarily efficient. Hardware accelerators only render triangles, so implicit surfaces

must be converted to triangular meshes before rendering, which can be costly.

Parametric surfaces are formulated as[x, y, z] = P (p, q), wherep, qǫ[0, 1] parameterize its sur-

face. This formulation is popular because of convenience inmodeling, as well as simplified ren-

dering. Commonly used parametric curves are mostly cubic polynomials: bezier, hermite, NURBS,

etc. Parametric surfaces form patches which are used together to build an object, similar to how

polygons are used in polygonal models. It is much easier to convert parametric curved surfaces

into triangular meshes, making them more useful for real-time use. Most recent graphics hardware

actually supports tessellation of some kinds of parametricsurfaces.

2.1.3 Lighting

In model-based graphics, lighting is usually performed by evaluating a parameterized lighting equa-

tion, either at each vertex or each rendered pixel and modulating that result with the surface color.

Ambient Ambient lighting is simply a constant amount of light, used to approximate global illumi-

nation effects.

L = a (2.1)

Here, a is the amount of ambient light.

Diffuse The diffuse or Lambertian lighting equation simulates lighting from rough surface. In this

model, light incident to the surface is emitted equally in all directions.

L = a + d(n · l) (2.2)

8



Here,a is the amount of ambient light,d is the amount of diffuse light,l is the light direction, andn

is the surface normal.

Specular Shiny surfaces can be simulated by having some amount of light reflect specularly (like a

mirror). The Phong lighting equation is an example of such a model.

r = 2(n · l)n − l (2.3)

L = a + d(n · l) + s(r · v)n (2.4)

Here,a is the amount of ambient light,d is the amount of diffuse light,l is the light direction,n is

the surface normal, v is the view direction, s is the amount ofspecularity, r is the reflection vector,

and n controls the size and intensity of specular highlights.

2.2 Image-Based Models

IBMR (image-based modeling and rendering) research seeks to simplify the modeling process, at

least for scenes and objects that exist in the real world, which we may simply want to capture for

re-rendering. There are two categories of IBMR algorithms:methods which simply use images to

generate a conventional 3D model that is then rendered with standard methods, and methods which

acquire some other sort of model which requires specializedcode for rendering.

Many algorithms exist for modeling conventional geometry from images. Stereo or multi-view

stereo imaging computes depth images by finding image point correspondences in two or more

images from calibrated cameras [47]. Shape from shading andphotometric stereo solves for a depth

image using one or multiple lightings of a scene [59]. Shape from focus acquires depth information

using multiple images from the same view with different focal settings [43]. Structure from motion

(SFM), like stereo, uses multiple image point correspondences to build 3D models. However, many

image frames from a moving camera are used, and camera calibration is not required. A basic SFM

method is shown in Section 3.1.

Shape from silhouette (SFS) uses the occluding contour of anobject in multiple images to con-

struct a volume approximating that object: thevisual hull. We will discuss SFS in more detail

in Section 3.2. Photo-consistency methods, use multiple images and the property that a particular

point on an object should be the same color when viewed from any direction. With this property the

photo-hullof the object can be “carved” from a volumetric structure [29].
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Although the research in modeling from images is extensive,most methods are neither compu-

tationally efficient, nor particularly robust. This is partof the motivation behind pure image-based

rendering, where the intermediate geometric model is eliminated, and novel images are generated

more directly from sample images.

Most image-based models can be thought of as storing a large database of light rays which are

acquired from some set of sample images. New images can be generated by finding a ray in the

database that corresponds to each pixel in the desired image. The set of all rays through a scene

with a given origin and direction is called the plenoptic function [41]. Pure image-based methods

usually take samples of the plenoptic function for a scene orobject using many images, where each

image pixel samples a single ray. Models differ in the way that the large amount of data is organized

and how the function is approximated between samples. Earlymethods of this type include lumi-

graph [20] and light-fields [31], which have led to many different varieties. Rendering new views

using this type of model can require relatively little computation, but the memory requirements for

approximating the 5D plenoptic function are very large. To reduce this effect achieving equivalent

photo-realism, image-based data is often combined with approximate geometric models.

2.3 Hybrid Models

In real systems, pure geometric models are rarely used sinceit would be difficult, or near impossible,

to model small scale details such as surface texture using polygons. However, due to their incredible

storage and acquisition requirements, pure Image-Based Models are not very practical either. Some

combination is usually used, giving rise to hybrid methods.

Although most conventional modeling and rendering software is geometry-based, texture map-

ping is always supported. Texture mapping is where images are simply pasted onto geometric mod-

els. This allows small and sometimes repetitive details to be represented much more efficiently

than with polygons. Texture maps can be thought of as storingspacially varying albedo (or dif-

fuse reflectance color). Texture mapping has been extended to vary other parameters in the lighting

equation, such as surface normal (as in bump maps), specularity, or glow.

On the opposite side of the spectrum, some image-based rendering algorithms are based on

reprojection of images with depth. This means that at each pixel we know the depth of that part

of the scene along the camera’s viewing direction, and thus we know some geometric information

about the scene.
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More in the middle lies view-dependent texturing, where different textures are applied to a sur-

face depending on the viewing direction. This reduces the visual effect of slight inaccuracies in

the geometric model [12]. The bidirectional texture function (BTF) takes this one step further by

sampling textures for variation in both the viewing direction and the lighting direction. This takes

quite a bit of memory and acquisition time, but allows a real-world texture to be captured and ap-

plied to an arbitrary geometric model [11]. In Chapter 4 we describe our own approach to this type

of parameterized texture rendering and we detail the storage and rendering optimizations that were

made.

2.4 Graphics Hardware

The need for specialized graphics hardware grew primarily out of the complexity of a few particu-

larly computationally expensive problems such as perspective correct texture-mapping, and visible

surface determination. Early graphics chips, such as the 3Dfx Voodoo, solved only these problems

related to the rasterization of triangles. These include texture-mapping, color interpolation, alpha

blending, and depth buffering.

In the second generation of graphics processors (now calledGPUs) vertex transformations, light-

ing and triangle clipping were performed in hardware. In thethird generation, programmability was

added to the pipeline.Vertex programs, which allow precise control of how vertexes are trans-

formed, andfragment programswhich compute the color of each pixel were added. The most recent

iterations of the GPU have seen primarily an increase in the complexity of fragment and vertex

programs.

The GPU is an incredibly parallel architecture. Since both vertexes and pixels are not allowed to

rely on any particular ordering of computation, many vertexes and pixels can be processed at once.

For example, the NVidia GeForce 7800GTX can process 24 pixels and 8 vertexes simultaneously.

A slightly simplified flow chart of the hardware graphics pipeline is shown in Figure 2.1. The

following is a brief description of that hardware model. Fora more detailed examination of graphics

hardware see [1].

Vertex data including position, and optionally other attributes such as texture coordinates and

color, is stored in a vertex buffer. A second buffer called anindex buffer stores indexes into the

vertex buffer indicating which vertexes are connected to form triangles.

The GPU reads vertexes from the vertex buffer and passes themto avertex program. The vertex

program usually transforms each vertex from its local object coordinate system into the global world
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Figure 2.1: Simplified view of the graphics pipeline. Programmable components are shaded in gray

coordinate system, and then projects the vertex onto the virtual camera. However, the vertex program

is written by the user, and can perform any operation desired. The vertex position in camera space

must be output from the vertex program; a number of additional 4D attribute vectors can be output

which will be interpolated between triangle vertexes during rasterization.

Vertexes output from the vertex program are then assembled into triangles which are clipped to

the screen and rasterized. The rasterizer finds each pixel inside a triangle, computes interpolated at-

tributes for that pixel, and passes them as parameters to afragment program. The fragment program

computes a color - and optionally depth - for each pixel.

The depth of the current pixel is compared against the current value in the depth buffer to see if

it is visible. If the depth test fails, the pixel is not rendered. If it passes, the depth is written to the

frame buffer, and the color is sent on to blending. The blending stage reads the color at the current

pixel location from the framebuffer, combines it with the rendered color, and writes it back to the

framebuffer. Usually the 4th component of the color vector,called the alpha, is used as an opacity

to render translucent surfaces, but other blending functions are available.
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Chapter 3

Review: Building Geometric Models
from Images
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With the rapidly decreasing prices, and increasing qualityof consumer grade digital imaging

devices, geometric modeling from images has become a very active research area. Suddenly, a large

number of consumers own digital still cameras, video cameras, and web-cams making applications

of passive vision technology reasonable consumer products. Applications such as personal captured

custom character models in games, automatic modeling of household objects for use in home design

software and many others would be commercially viable if they were robust and easy to use. Now

that the required hardware is affordable, research into howto accomplish these tasks on available

hardware has suddenly become very interesting.

Here, we describe two algorithms for acquiring geometric structure from images, and show

results from each method. Structure from motion (SFM) uses corresponding feature points in a video

sequence to compute geometric information, while shape from silhouette (SFS) uses the silhouette

of an object in several views to approximate its shape. Some models acquired using each algorithm

will be shown, and the two methods will be compared and contrasted.

The geometric models acquired by these methods will be used as the first level of detail in our

hierarchical model, representing the macro scale features. Following chapters will describe how

micro and meso scale information is represented and rendered.

3.1 Structure from Motion

Structure from motion (SFM) is a method for acquiring geometric information from a sequence of

images. SFM is similar to stereo methods, but uses multiple images from a single camera rather

than simultaneous images from multiple cameras. The main advantage of SFM methods is that they

require little or no camera calibration, which can be tedious. A disadvantage of this method is that,

due to the difficult task of feature correlation or tracking,the result is a quite sparse geometry. Since

we only use this as the lowest detail level in our hierarchical model, this is not much of a problem

in our case.

Uncalibrated SFM solves for both camera calibration and geometric structure in one step. Such a

problem is very difficult using an accurate model of the imaging process, but with some approximate

camera models, the solution is simple.

The simplest camera models are parallel projection models.This type of camera does not model

the convergence of rays to a focal point in a true perspectivecamera and is therefore only reason-

able in certain situations. In particular, parallel projection models are appropriate for long telephoto

lenses or when the object of interest is always near the central axis, which is true in our experi-
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ments. Although it is possible to perform SFM using more accurate perspective projection models,

the parallel projection model is used here for simplicity [24, 45]. We will describe in detail the

implementation of SFM using theorthographiccamera model [51]. In this type of camera, after

rotation and translation into the camera’s coordinate system, a 3D point is projected onto the camera

by simply removing it’s Z coordinate.

First, we must choose a set of feature points on our object or scene which are all visible in every

sample image. Then we need to find the 2D positions in each image where these features project.

This can be done in various ways; we have used visual tracking. Using the XVision2 tracking

libraries, we track several manually selected feature points in real time during image acquisition

[30].

We compute the average feature position in each image and subtract it from all the feature points

in that image so that translations can be ignored. After removing translation, a single point can be

projected onto imagei by multiplying by a 2x3 matrixPi which is simply a 3D rotation matrix with

the third row removed.

xi,j =

[

Pi,1,1 Pi,1,2 Pi,1,3

Pi,2,1 Pi,2,2 Pi,2,3

]

Xj (3.1)

A set ofm points can be projected onto imagei with a single matrix multiplication:

[

xi,1 xi,2 · · · xi,m

]

= Pi

[

X̂1 X̂2 · · · X̂m

]

(3.2)

Finally, all m points inn images can also be projected using a single matrix multiplication:
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P̂1

P̂2

...
P̂n











[

X̂1 X̂2 · · · X̂m

]

(3.3)

x = P̂ X̂ (3.4)

Note that theX̂j are 3x1 vectors, thexi,j are 2x1 vectors and thêPi are 3x2 projection matrices.

So, thex matrix contains our known feature positions in each image after removing translations.

The rest of the equation is unknown. In order to compute the 3DstructureX and the camera

orientationsP , x must be factored. Using SVD, we decomposex into USV T . Ideally, using an

actual orthographic camera,x would be rank 3 and thus have only 3 non-zero singular values.Due

to noise and the approximate camera model, this may not be thecase, but we still expect the 3
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largest eigenvalue-eigenvector pairs to capture the geometric structure. So we drop all but the first 3

columns ofUS and all but the first 3 rows ofV T . ThenX̂ = V T , andP̂ = US.

This first step is simple, but we are not finished. As stated earlier, eachPi is 2 rows of a 3x3

rotation matrix, meaning that those two rows should be orthonormal. The solution found with SVD

is an affinestructure, with no constraints on thêP matrix. However, we can enforce Euclidean

constraints by using the SVD solution as a starting point fora non-linear optimization algorithm.

First we must convert each matrix̂Pi into a 3x3 matrixP̃i by computing the third row as the

cross product of the first two. Then we solve for a single3x3 matrixQ which, when multiplied by

anyP̃i, results in an orthonormal matrixPi = P̃iQ. Then theX matrix is multiplied by the inverse

of Q, X = Q−1X̂, so thatPiX = P̃iQQ−1X̂ for all i. To compute Q, we use a non-linear solver

with an error metric which should be zero when allPi are orthonormal.

This algorithm gives us a set of Euclidean 3D points. To form apolygonal model, we have often

simply performed a delaunay triangulation on the average projected positions of all points. If the

results are not exactly as desired, the user can manually modify the triangulation. Since the number

of polygons on this type of model is typically very low, this is not usually a difficult task.

3.1.1 Results

Figure 3.1: A few sample inputs to the SFM algorithm with tracked feature positions

Here is an example of structure captured using this technique. Figure 3.1 shows three of many

input images with the tracked features marked. A rendering of this house after capturing its geometry

using SFM is shown in Figure 3.2 along with the triangulationwhich was generated manually to

make a 3D surface out of the set of points.

Texture patches are tracked in video to identify correspondences using XVision2, a tracking

library for C++ [30]. These patches must be sufficiently textured and locally unique in order to track

robustly. These types of patches are difficult to identify automatically, and sparse on most objects.

For this reason, we have users manually select points of interest. This results in sparse models, but

where features lie on important points on the model, such as the corners of the house in Figure 3.1.
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Figure 3.2: SFM results triangulated geometric structure and a rendering (rendering uses view de-
pendent dynamic texture)

3.2 Shape from Silhouette

The silhouette of an objectsv is the set of points where the object projects onto an image plane from

a particular view. A single silhouette contains a large amount of information about the shape of the

object. Givensv, and camera parametersv we know that the object is inside the volume that the

silhouette coneSv defined by all rays from the camera center passing through allpoints insv. Since

this holds for all views, given a set of viewsV , we can constrain the object’s volume further, to the

intersection of all silhouette cones:
⋂

v∈V Sv. The limit of this volume as the number of distinct

views |V | → ∞ is known as thevisual hull of the object, provided that no views inV are are

centered inside the convex hull of the object. From a finite number of views, the volume acquired is

called the approximate visual hull, but we will simply referto it as the visual hull.

The process of computing the visual hull from a set of images is known as shape from silhouette

(SFS). Intersection of arbitrary shapes can be very expensive, but by taking advantage of some

key features of silhouette volumes, and the intended application, the visual hull can be computed

efficiently, in some cases in real time. In the following, we classify methods by image-based (2D to

2D), model-based (2D to 3D) and by data structure.

3.2.1 Silhouette Extraction

To extract shape information from silhouettes, the silhouettes must first be extracted from images.

This is the problem of segmenting an object from the background. Two methods are commonly

used: background subtraction and blue-screening.

We use the following statistical color segmentation method. The user selects some region(s)

in some example image(s) to identify a set of pixels in the solid colored background. Principle
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components analysis is applied to the selected RGB pixels, giving us a space that is well aligned to

the statistical properties of the selected background pixels.

We build a matrixC where every row is formed by subtracting the mean color valuec̄ from

a pixel in the selected set. Then we find the eigenvectorsEC and eigenvalue matrixλC of the

covariance matrixCT C. We then useET
Cλ−1

C as our new color space. To perform the segmenta-

tion, we apply a thresholdτ to each pixel’s norm after being transformed into the new color space.

Background pixels satisfy equation 3.5.

|ET
Cλ−1

C (c − c̄)| < τ (3.5)

Normally, a small number of pixels are misclassified. SFS is very robust to pixels falsely marked

as foreground by color segmentation. Pixels incorrectly labeled as background would cut holes

through our results, but other noise is simply removed by silhouette volumes from different views.

3.2.2 Intersection Algorithms

There are three classes of algorithms used in SFS: volumetric methods, polyhedral methods, and

image-based methods. Volumetric methods use some kind of discretized volume representation,

such as a voxel grid, and perform intersections discretely in that space. Polyhedral methods perform

exact intersections of multiple polyhedral meshes. Image-based methods only compute new views

of the visual hull given input silhouettes.

Polyhedral Methods

The best possible model of the visual hull that we can computefrom a set of images is the exact

polyhedral visual hull. This could be computed naively by forming polyhedra from each silhouette

and intersecting them all in 3D using a general CSG algorithm. However, due to the projective

nature of the silhouette volumes, much more efficient algorithms exist. Matusik et al. [39] has

recently proposed a very efficient algorithm which will be briefly described here.

First, each silhouette image is converted into a set of line segments separating the object from the

background. These edges form a set of polygons with possibleholes, that represent the occluding

contour. The resolution of the edges is chosen based on curvature, so that regions of higher curvature

in the contour are represented with more edges than regions of lower curvature. The number of

polygons in the resulting model can be adjusted by controlling the number of edges in the input

silhouettes, as well as the number of input silhouettes.
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Each edge generates a 3D polygon of a silhouette cone when it is back-projected with its cor-

responding camera parameters. It is important to note that every such polygon will generate one or

more polygons in the output model. Each polygon is projectedonto each image plane, intersected

with the silhouette polygon for that image (in 2D). Both polygons are possibly non-convex with

holes. The resulting 2D polygon intersection is projected back onto the plane in 3D.

The resulting set of polygons are the polyhedral visual hull. Each polygon in the resulting model

has its own copies of all vertices, so, in a final step, duplicate vertices are removed.

Figure 3.3: Polyhedral Visual Hull: the bounding polygons of the volume are calculated

Although this algorithm is very efficient compared to the naive implementation, when using

large numbers of images, as our we have in most of our experiments, performance would be much

slower than volumetric methods. Because of this, in addition to the implementation complexity of

exact polyhedral algorithms, we have favored volumetric methods.

Volumetric Methods

The easiest way to intersect volumes efficiently is by quantization of the 3D space. By representing

the space as a finite number of basic elements, it becomes easier to enumerate which portions of

the space are inside or outside the object. The obvious down side is that with quantization comes

aliasing. If any of the details of the object are smaller thanthe size of a single volume unit, they

will be lost. However, quantization is also a means for adjusting the speed vs. quality trade-off by

changing the quantizing resolution.

This method was first used for SFS by Martin et al. [37] in 1983.They represented the volume

as a grid of parallel rays with points of volume entry/exit recorded for each ray. It was implemented

with an orthographic camera model, but easily extends to perspective.

The simplest way to quantize a volume is to split it into a 3D grid of equal-sized cubes, called
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voxelsor volume elements. This is the simple 3D extension of the wayimages are stored as an array

of pixels. We have used a more processing and memory efficientmethod for quantization called

marching intersections [46].

Developed recently by Tarini et al. [46], the marching intersections data structure (MI) was

initially used for performing boolean operations, fixing errors, and adjusting polygon count in poly-

hedral models. It was shown to also be particularly efficientstructure for use in SFS [42].

The MI data structure consists of three sets of rays, each parallel to one of the three axes (X Y

or Z). For each set, there is an NxN grid of rays, so they combine to form an NxNxN cube. Each ray

stores all points along its path where the object being represented is entered or exited. This repre-

sentation contains all the information of a voxel grid, plusit stores exact surface intersection points

along each ray, yet uses onlyO(N2) storage (since each ray only passes through the object a small

number of times). The reason for the name marching intersections is that this data structure stores

the exact information necessary to render the surface properly with marching cubes (no interpolation

necessary) [35].

Boolean operations (such as intersection) on the using the MI data structure are reduced to 1D

operations between rays. So in order to perform silhouette intersections, each silhouette cone can be

converted to MI, and then all the MI cones can be intersected with each other easily by performing

intersections on all the rays. In practice, a single MI structure can be updated iteratively to save

memory.

Efficient intersections of a MI structure with a silhouette cone are performed as follows. Each

ray is projected onto the image. The rays are “drawn” using the Bresenham line algorithm [3], and

points where the line crosses from a background pixel to a silhouette pixel, or from a silhouette pixel

to a background pixel are noted. Each of these intersection points is then back-projected to form a

ray, which is intersected with the current ray being processed, and the intersection point is stored on

that ray in the MI data structure.

Further performance increases are achieved by noting that when using a high resolution MI

data structure (say 512x512x512), many of the parallel raysproject to the exact same 2D line in the

image. Therefore, the 2D intersection points of that line with the image don’t need to be recalculated

(intersection of the back-projected ray with the 3D ray still does need recalculation). In [42] a cache

is used to store this data, and the resulting improvement in performance is significant, making the

method scale much better to higher resolutions than other algorithms.

One of the problems with this method is that the MI data structure can easily become in conflict

with itself. Errors are the result of floating point error, oraliasing problems as a result of intersecting
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Figure 3.4: Visual hull with marching intersections: ray intersections of a grid pattern with the
volume are stored

lines with the 2D silhouette image. The problem is that one set of rays may indicate that a point is

inside the volume, while another ray set says that point is outside the object. This is not a problem

to identify, but removing such inconsistencies is non-trivial. When rendering a structure with errors,

the marching cubes algorithm may get to a cube which intersects the surface and should be rendered

but all the intersection points are not available. In this case, unavailable points must be interpolated

from available data.

This method was used in combination with dynamic texturing for the system described in Section

6.1.2. Figure 3.5 shows an example of a model captured with this algorithm.

Image Based Methods

For real time applications, it is often the case that you would like to capture a model, and then display

it from an arbitrary view-point immediately (possibly after transmission over a network). For these

applications, as you can imagine, the 3D model can only be viewed from one view-point at a time.

So every time the 3d model is computed, it is only used once. The idea with image-based methods

is to generate particular view of the model, without the extra step of creating a 3D representation.

Matusik et al. [38] was the first to develop an image-based SFS. The method is exact to the

resolution of output image. Each pixel is traced back along aray, and if that ray intersects the visual

hull then the pixel is rendered.

The HAVH (hardware accelerated visual hulls) algorithm developed by Li et al. [33] makes

use of consumer graphics hardware to render arbitrary viewsof the polyhedral visual hull directly

from the input silhouettes. Originally, the number of reference images was limited by the number

of texture units available on the hardware, but with increasing programmability, this is no longer

a constraint since many images could be placed in one texture, and unlimited texture accesses are
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available in shader model 3.0.

From each silhouette image a 3D cone is generated as a polyhedron. Every polygon on every

silhouette cone is then rendered. The trick is that all the silhouette images are applied to all the cones

with projective texture mapping (using the projection matrix from their corresponding cameras).

These textures have alpha=1 inside the object and alpha=0 outside, and are used as a mask that

eliminates the portions of each cone that do not lie on the surface of the visual hull. All polygons

are still rendered entirely, but only the correct parts of them actually generate pixels in the image.

Some results using this algorithm are shown in Figure 3.6.

3.2.3 Results

Figure 3.5: An elephant captured using SFS with a stationarycamera and turntable. A few of the
input images are shown on top, and the reconstructed elephant is shown on the bottom.

Figure 3.6: Results using the HAVH on algorithm on a hand withthree cameras

Here we show a couple of examples of some objects captured with shape from silhouette. Fig-
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ure 3.5 shows an elephant which was captured on a turntable. Several images were taken from a

stationary camera as the object was rotated on a turntable. The geometry shown was captured using

the marching intersections SFS algorithm.

In Figure 3.6 we see a visual hull reconstruction using far fewer images. Only three cameras are

being used here. However, in this case, the visual hull is being constructed and rendered on the same

machine in real-time using the HAVH algorithm.

3.3 Discussion and Comparison

Although both SFS and SFM have been used in this research, we have favored the silhouette-based

approach. For a small object capture system, SFS is much morerobust and simpler from a user’s

perspective. Minimal to no user input is required for a turntable system.

In our SFM system, the user must identify the points to be tracked, then carefully move the

object or camera around on a tripod, then check the automatictriangulation and potentially change

it. All that work and you can still only capture a small variation in viewing angle before some of the

tracked points are lost. With the SFS system, the user simplyidentifies the background color, and

the approximate location of the object in two images, and a full rotation around the object can be

captured. In addition, SFS results in a much more accurate and detailed model.

The SFS system, however, can never be expected to capture a scene, like the interior of a room

for example, which is possible with SFM. And SFS requires camera calibration in the form of a

calibration pattern in each image. Each technique has its benefits, but for a small object capture

system, with potentially unskilled users in mind, we have found SFS to be much more successful.

For the SFS intersection algorithm, we have used the marching intersections method in the sys-

tem in Section 6.1.2. This algorithm was chosen for the following reasons: it is nearly as easy to

implement and efficient as a voxel-based method; it uses lessmemory (O(n2) vsO(n3)); resulting

structure is more accurate due to the exact intersections.
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Chapter 4

Dynamic Texture
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4.1 Previous Work

Conventional graphics represents micro scale detail usingparameterized lighting equations which

attempt to simulate the surface’s reflectance properties. The Phong lighting equation shown in Equa-

tion 2.4 is a classic example. More generally, the function being approximated by such models is

called the bidirectional reflectance distribution function (BRDF). The BRDF gives the proportion

of light transfered in the direction of the camera, given thedirection from the light. For a real ob-

ject, the reflectance properties often vary continuously over the surface. The bidirectional texture

function (BTF) [11] is texture parameterized by viewing andlighting direction, which represents a

spatially varying BRDF as well as parallax, self-occlusion, and self shadowing effects.

The BTF can be represented by just storing a large database ofimages. Our method, thedynamic

texture, is a method for representing and rendering parameterized texture maps, such as the BTF,

more efficiently [7]. Related work includes polynomial texture maps, which compress parameterized

textures by storing only the coefficients of a biquadratic polynomial at each pixel in the texture [36].

Several other methods, including ours, use a linear basis torepresent texture variation.

Freeman et al. showed that an image basis can be used to createthe perceived effect of motion

[19]. Jagersand showed how a basis can be used to represent motions as complicated as articulated

agents (directly in the image plane with no geometry) [25, 26]. Certain types of animated textures

such as water waves and fire were rendered using a basis and animated in eigenspace by Soatto et

al. [50, 14]. These animated textures were also called dynamic textures, but not to be confused with

our method by the same name.

The eigentexture method uses an image basis to represent lighting on a precise 3D model.

Tensor-textures use a multilinear basis [52] to store the full BTF, with both view and lighting varia-

tion. Tensor-textures are interesting because they separate the lighting and view variation in a way

that we can use a small number of basis elements for lighting variation, and a large number for view

variation, resulting in better compression for the same quality. However, to capture a tensor texture,

a full set of matching lighting conditions is required for every view. This is difficult to achieve with

a real system, and so their implementation uses only computer generated inputs.

Our method,dynamic textures, can represent both view and lighting variation including lighting,

self-shadowing, parallax, and self occlusion with a singlelinear basis. Where other methods often

use planar material samples or acquire the basis in image space, we acquire our dynamic textures

directly from real objects using approximate geometric models as shown in Sections 6.1.1 and 6.1.2

[6, 7]. In addition, our method, achieves additional compression by using the YUV color space as
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described in Section 4.3. Other methods either ignore color, working in grayscale, or use the less

optimal RGB color space.

4.2 Theory

A simple method for implementing any type of parameterized texture mapping is to store a large

number of textures, by observations made with different known parameters, and when rendering

just pick the observed texture with the nearest parameter. Aslightly more intelligent method is

to blend linearly between a few observed images with similarparameters (images observed from

similar viewpoints in the case of view-dependent textures).

With dynamic texturing, instead of simply storing textureswith various known parameters and

interpolating them, we compute a linear basis from all observed textures, and blend this basis using

interpolated coefficient vectors to generate new textures.Depending on the texture, the derived basis

may have far fewer elements than there are observed textures, using much less memory, while still

spanning the same texture variation.

To motivate the derivation, consider interpolated view dependent texturing as it is described in

[12]. When rendering a new view with parameters identical toone of the original sample views,Ik,

the texture derived from imageIk, Tk = w(Ik), is used to texture the model, wherew is a warp

function defined by a 3D triangular mesh with texture coordinates.

At all other viewing positions, some linear blending of nearviews is used, with a vector of

weightsx based on their similarity to the current view. This can be expressed mathematically by a

matrix multiplication, where the columns ofT contain the sample viewsT = [I1, I2, ..., Im].

t = Tx (4.1)

The major variability inT is due to geometric parallax error and illumination differences. Through

an analytical derivation, a first order linear basis can be found to represent these types of variability

[49, 21, 7]. This means that for large image sets, we can find a new basisB with far fewer columns

thanT , such thatT ≈ T̃ = BY . Textures are then generated ast = BY x, and the number of basis

images, and overall memory consumption is reduced.

WhileB could be be computed analytically, given exact geometric knowledge of the scene, cam-

era and lighting, this is seldom feasible in image-based approaches. Instead we use the knowledge

that there exists a subspace spanningT to obtain the best (in the least square sense)B through Prin-

ciple components analysis. We calculateM as the eigenvectors ofT T T . A dimensionality reduction
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is achieved by using only the firstn eigenvectorsM1..n. Thus, our texture basis isB = TM1..n and

our coefficients areY = MT
1..n.

To estimate the coefficients for intermediate poses, we interpolate between the coefficients of

sampled poses. For efficient implementation, cubic interpolation is applied during preprocessing,

and results are stored in a set of 2D look-up tables (one for each basis image) which map view

direction to blending coefficient. Entries in the blending tables are then bilinearly interpolated during

rendering.

The benefits of using the dynamic texture basis rather than standard view-dependent texturing,

is that significantly less storage is required. The down-side is that every element of the texture basis

will have an effect on the result at any view, instead of only the nearest few. This will require a little

more work when rendering. However, in current graphics architectures, bandwidth and memory

limitations are a greater problem than computation when it comes to image based rendering methods.

4.3 Color Space

The mathematics of this section allow for color dynamic textures by flattening entire images, in-

cluding color dimensions, into single column vectors. However, we prefer to perform the process

separately on color channels to improve compression by considering human perception. In gen-

eral, we are more sensitive to high frequency intensity changes than we are to high frequency color

changes, which is exploited by most image compression, video compression, and even analog tele-

vision broadcast standards.

We use the YUV color space, where the Y channel is intensity, and U and V are color channels.

By performing the PCA separately on the Y, U, and V channels, we are free to use both different

resolutions and different numbers of basis images for each channel. We generally use many high

resolution basis images for Y, while using few low resolution basis images for U and V. This re-

sults in both additional data compression, and improved rendering performance, with little or no

difference in the resulting image quality.

4.4 Per-Pixel Rendering

When rendering a dynamic textured model with some parameters (viewing direction, light direction,

etc.) we have some options as to how to set these parameters: we can choose to use the same

parameter for a whole object; we can compute individual parameters for each polygon on the model;

or, ideally, each pixel in the final rendered output will haveit’s parameter individually computed.
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Figure 4.1: An example where per pixel dynamic texture rendering is necessary. The solid gray
object is the true object. The dashed quadrilateral is the approximate geometry that the dynamic
texture will be applied to. The light gray cameras indicate sampled viewing directions, the black
camera is the new desired view. Note that none of the sample views can see the entire indentation
while the new view can.

Consider view-dependent texturing of the object as depicted in Figure 4.4. None of the 4 camera

views from which sample textures were taken can simultaneously see all sides of the indentation,

yet the entire indentation is visible in the desired new view. Clearly using one viewing-direction

parameter for the whole object, or for each individual polygon will not accurately render the new

image. Per pixel accurate rendering is required. Although this scenario may seem convoluted, and

appear to be solved by simply adding more cameras, note that if the cameras are distant relative to

the size of indentations, which is generally the case, this situation will occur often.

To achieve per-pixel rendering, we first assume the sample images are taken from a distant

camera (this assumption is roughly valid if we use a telephoto lens at capture time). Then, when

rendering new views, at each pixel, we use the direction of the ray from the virtual camera center

through the current pixel as the viewing direction parameter to the dynamic texture at that pixel.

With no rendering speed constraints, this is simple, and ourMaya plug-in, discussed in Section 4.6,

easily accomplishes per pixel rendering. In order to apply this technique in real-time, we can use

the algorithm shown in Section 4.5.3, which stores coefficient lookup tables in textures, and indexes

them with the view direction at each pixel.
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4.5 Hardware Accelerated Rendering

Rendering of dynamic textures consists of blending a potentially large basis of images. These oper-

ations are very well suited for implementation in graphics hardware. Through the rapid progression

of graphics hardware during this research, several hardware implementations were developed.

4.5.1 Multi-pass Blending

The first and simplest method is to use frame-buffer blending. This method is supported by even

very old graphics hardware, but requires the use of RGB colorspace, not taking advantage of the

memory benefits of YUV as described in Section 4.3.

Image blending features are intended to enable rendering oftransparent surfaces and other ef-

fects in standard model-based 3D graphics applications. However, most hardware is capable of

performing more general blending, including the combination of scaled basis textures required for

our rendering. However, the rendering hardware used is designed for textures containing positive

values only, while the spatial basisB is a signed quantity. We rewrite this as a combination of two

textures with only positive components:

I(t) = B+
y(t) − B−

y(t) + Īq

HereB+ contains only the positive elements fromB (and0 in the place of negative elements) and

B− contains the absolute values of all negative elements fromB. Then, before drawing each basis

texture, the blending mode can be set to either scale by a coefficient and add to the frame buffer, or

scale by a coefficient and subtract from the frame buffer (depending on the sign of the coefficient).

A new view is rendered as in the following pseudo-code:
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// draw the mean
BindTexture(Ī);
DrawGeometry();

// add basis textures
for(each i)
{
SetBlendCoefficient(|yi(t)|);
BindTexture(B+

i
);

if(yi(t) > 0) SetBlendEquation(ADD);
else SetBlendEquation(SUBTRACT);
DrawGeometry();

BindTexture(B−

i
);

if(yi(t) > 0) SetBlendEquation(SUBTRACT);
else SetBlendEquation(ADD);
DrawGeometry();

}

4.5.2 Multi-pass with Programmable Hardware

As the pixel pipeline began to become programmable, withShader Model 1.0cards, we took advan-

tage of several useful features: Textures could now be stored as signed 8 bit values, cutting memory

consumption in half; multiple textures could be combined ina single pass, increasing performance,

and reducing the chance of overflow; enough processing was available to convert between color

spaces during rendering enabling us to take advantage of YUVcolor space as described in Section

4.3.

In this implementation, each RGBA texture image representsfour basis textures from a single

color channel (Y,U or V) scaled and biased to fit in the range (0,1). In each rendering pass, as

many basis images as possible (four times the number of available texture units) are multiplied by

their coefficients, the results are summed, and multiplied by the row of the color conversion matrix

that applies to the current color channel. Between passes, we use OpenGL blending to add/subtract

results with the frame buffer contents. Since signed frame buffer blending is still not supported, we

are still required to render one pass for addition and one forsubtraction for all passes except the first.

Some simple effects, such as relighting, can easily be achieved in a single pass with just a handful

of basis vectors.

Three implementations of this algorithm were written: one using the OpenGL shading lan-

guage(GLSLang), one with ARBfragmentprogram 1.0, and one with NVidia’s register combiners.

The fragment program and GLSlang shaders, which run on shader model 2.0 and 3.0 hardware re-

spectively, also benefit from floating point computation within the shader, avoiding any overflow or

underflow within each pass. The GLSLang shader is shown here:
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uniform vec4 colormat;
uniform vec4 coeff[gl_MaxTextureUnits];
uniform sampler2D tex[gl_MaxTextureUnits];
varying vec2 texcoord;

void main (void)
{

vec4 tval;
float col=0.0;
for(int i=0;i<gl_MaxTextureUnits;i++)
{
tval=2.0*(texture2D(tex[i],texcoord)-0.5);
col+=dot(tval,coeff[i]);

}
gl_FragColor = col*colormat;

}

Pseudo-code for rendering with this shader is given here:

for(each color channel B, y)
{
for(i = 1 to N/(4*MaxTextureUnits))
{
for(j = 1 to MaxTextureUnits)
{
SetShaderConstant(coeff[j],y4∗i(t),y4∗i+1(t),y4∗i+2(t),y4∗i+3(t));
BindTexture(j,B4∗i:4∗i+3);

}

SetBlendEquation(ADD);
DrawGeometry();

for(j = 1 to MaxTextureUnits)
{
SetShaderConstant(coeff[j],−y4∗i(t),−y4∗i+1(t),−y4∗i+2(t),−y4∗i+3(t));

}

SetBlendEquation(SUBTRACT);
DrawGeometry();

}
}

4.5.3 Single Pass Rendering

Although the method in Section 4.5.2 is very efficient even onup-to-date hardware, we have imple-

mented a third method which will blend even a large basis in a single pass. Although this method

is slightly slower, it is cleaner, and easier to use since allblending is done in one place. Overflow

and underflow are completely avoided since all blending computations take place in floating point.

It also looks up coefficients per pixel, rather than having the application place them in constants,

which could be used to vary the interpolation if parameters (viewing, lighting etc.) change per pixel.

Shader model 3.0 hardware has no limits on the number of texture accesses within a shader.

However, there are limits to the number of textures that can be bound at once, and limits to the num-

ber of constants available. To implement blending within a single pass we have tiled basis textures

and coefficient interpolation tables into six large textures: three for the Y,U and V bases, and three

for the Y, U, and V interpolation tables. During rendering, an index into the coefficient interpolation
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tables, the number of basis images, and the color matrix are provided by the application, and the

geometry is simply rendered. The GLSlang shader is shown below.

uniform mat4 colormat;
uniform sampler2D B[3]
uniform sampler2D L[3]
uniform vec3 count;
varying vec2 texcoord;
varying vec2 lutcoord;

void main (void)
{

vec2 tc,tc2;
vec2 lc,lc2;
int i,j;
vec4 col={0,0,0,0};
vec2 scale;
vec4 lutvalue;
vec4 basisvalue;

for(int channel=0;channel<3;channel++)
{
scale.x=1.0;
scale.y=1.0/count[j];

tc=texcoord*scale;
lc=lutcoord*scale;

for(i=0;i<count[j];i++)
{

lutvalue=2*texture2D(L[channel],lc)-1;
basisvalue=2*texture2D(B[channel,tc)-1;
col[channel]+=dot(lutvalue,basisvalue);
tc.y+=scale.y;
lc.y+=scale.x;

}
}

gl_FragColor = colormat*col;
gl_FragColor.a=1;

}

4.6 The Maya Plug-in

In addition to the various hardware accelerated implementations, a dynamic texture rendering plug-

in was implemented in software for AliasWavefront’s Maya modeling and rendering system. Using

this plug-in, the user can add any dynamic textured objects to a conventional graphics scene, and

even use the animation tools to make movies using dynamic textured objects combined with any-

thing else Maya can render. Integrating our system into commercial rendering software makes our

research much more accessible to the mainstream computer graphics community.

This rendering plug-in was used, together with a capture system based on shape from silhouette,

for rendering view-dependent dynamic textured artifacts in a virtual heritage setting. A set of carv-

ings depicting traditional Inuit seal hunting was capturedusing shape from silhouette with dynamic
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Figure 4.2: Two renderings from Maya that mix dynamic textured objects captured from images
with conventional hand modeled objects.

textures. The resulting models were then combined with traditional geometric models in Maya and

animated to tell a historically interesting story [17]. An interactive informational website, and a short

movie were created using this technology. Figure 4.2 shows two renderings from this project show-

ing some carvings captured using our system, and placed intoa scene with conventionally modeled

background objects.

4.7 Experiments

Here, we describe a few experiments which test the dynamic texture independent from the other

components of the system presented in this thesis.

4.7.1 Light Variation

Figure 4.3: A face lit using a dynamic texture with five basis images.

A set of images with different known lighting directions canbe acquired using a hemispherical

contraption with flashes mounted at various positions. By synchronized triggering of the flashes and

a single camera, images with many different lighting conditions, and identical viewing conditions

can be captured in a matter of seconds. Using a set of images captured with such a device, we have

built a dynamic texture parametrized in lighting direction. Since light variation is easily represented
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by a basis, the renderings shown in Figure 4.3 are generated using only 5 basis images, even though

there were more than 60 sample images. The renderings were generated in real time very efficiently,

requiring only two 3-component dot products and one addition per pixel (possible in a single pass

even in most hardware with two texture units) The basis images and mean image are shown in Figure

4.4.

Figure 4.4: The dynamic texture basis used for lighting the face in Figure 4.3. The mean is shown
in the upper left. Other elements scaled so that black is -1, white is +1 and gray is 0.

4.7.2 View Variation

The wreath shown in Figure 4.5 is nearly planar, but has smallintricate details that could not possibly

be captured by a simple planar texture map. We have computed adynamic texture parameterized by

viewing direction, and compare the results to simple texture mapping.

To build the dynamic texture, first, we warp the set of sample images to a set of square tex-

tures using the 4 corners of a rectangle surrounding the wreath which were marked with stickers.

This warp is achieved accounting correctly for perspectivedistortion by using projective homogra-

phies. once we have all views in this common texture space, weperform the PCA on the textures to

compute the dynamic texture basis.

Figure 4.5 shows renderings from three different views using both simple texture mapping, and

view dependent dynamic texture mapping. The wireframe box is shown in the figure simply to

illustrate the viewing direction, only a single quadrilateral is used in the actual rendering. It is clear,

especially in the view on the far right, that the dynamic texture renderings are much more natural

looking.
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Figure 4.5: Texturing a rotating quadrilateral with a wreath. Top: by warping a flat texture image.
Bottom: by modulating a dynamic texture basis which is then warped onto the same quad

We have found that although representing view dependency using basis modulation is possible,

it becomes inefficient when the range of views is very large. In particular, this problem relates to

how textures are warped from sample views into a common texture space. When a view is at a

nearly grazing angle to a polygon, there will be very few samples for the texture on that polygon,

and when it is warped into texture space, it will generate a very blurred sample. The result of this

effect is that even if the object being captured is in fact geometrically planar, an image basis will

be computed which incorporates the effect of blurring the texture at grazing angles. Although there

will be no visual artifacts caused by this, when combined with texture variation caused by parallax,

a larger basis is required than one would need for parallax alone. In addition, basis modulation can

only account for a few pixels of parallax, but when viewed from a grazing angle, any out-of-plane

variation in depth can be made to generate a very large translation of features in texture space. For

this reason, we suggest that displacement mapping, which wewill describe in Chapter 5, is much

better suited for representing significant magnitude parallax caused by approximate geometry (or

what we elsewhere refer to as meso scale structure). However, acquiring dynamic textures is very

simple and convenient, which in some cases outweighs the inefficiency just mentioned, making their

use for representing meso scale structures somewhat more attractive. This issue could be somewhat

improved with some modifications to the acquisition strategy, which are discussed in Section 7.1.
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Chapter 5

Displacement Mapping
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Displacement mapping is a surface representation where objects are coarsely modeled with a

conventional geometry, and fine details are represented with a displacement function giving a dis-

placement to the true surface from each point on the reference surface along the surface normal [9].

Displacement mapping is used in our model to represent meso scale details.

Various more approximate methods are available for representing meso structure. With bump

mapping, the surface normals are modified by abump mapaffecting only the lighting of the surface

[2]. Parallax mapping roughly approximates parallax by adjusting texture coordinates along the

view direction [55]. Displacement mapping, in comparison,accurately renders parallax and self

occlusion, as well as lighting when combined with a bump map or, in our system, a dynamic texture.

We have developed a novel algorithm for rendering displacement maps using modern graphics

hardware, which will be presented in this chapter. Althoughwe have designed this model in the

interest of making it both easily rendered and captured fromimages, we have thus far focused on

the rendering and not implemented or developed any algorithm which captures displacement maps

from images given a macro scale geometric structure. See Section 7.1 for further discussion on this

topic.

5.1 Previous Work

The concept of displacement mapping has existed for quite some time. Since Cook introduced the

idea in 1984, [9] techniques for rendering them have been evolving continually. Traditionally, dis-

placement maps have been rendered by uniformly subdividingeach polygon into micro-polygons,

and displacing the newly created vertexes using the displacement map [10]. In both ray-tracers and

real-time systems, these high polygon counts lead to memory/bandwidth inefficiency, and high ge-

ometric transformation costs, which limit performance. Even today, offline renderers still use this

method as it is easy to implement and speed is not necessarilyan issue. Hardware has recently be-

come capable of uniform subdivision displacement mapping by allowing vertex programs to sample

from textures (an input to the vertex program from texture data in Figure 2.1). However, since it

is possible for an object to extend from near the viewer to farfrom the viewer - a ground plane for

example - uniform subdivision becomes either inefficient orinaccurate: either distant surfaces have

many triangles smaller than a single pixel, or near surfaceshave noticeably coarse resolution.

Adaptive geometric subdivision becomes complicated sincehigher resolution parts must connect

to lower resolution parts without forming cracks in geometry. Other difficulties include noticeable

popping when mesh resolution in an area changes as the cameramoves. These problems have been

well-researched in software systems [34, 15] but due to the complexity of the problem, adoption in
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hardware has not been widespread.

Some image warping algorithms have been adapted from image-based rendering research for dis-

placement mapping. Relief textures [44] is an implementation which is suitable for hardware. How-

ever, image warping only usually applies to images with depth, or displacement mapped planes. Re-

lief textures have recently been generalized to cylinders [16], but generalization to arbitrary meshes

would be difficult.

Both geometric-subdivision-basedalgorithms and image-based algorithms perform forward map-

pings: geometric methods create triangles and then projectthem onto the screen, and image-based

methods directly warp images with depth onto the screen. Fora fragment shader based technique,

we need an inverse mapping, which determines which part of the geometry is visible at each frag-

ment. Some approximations of this form exist, such as parallax mapping [55], but the only way to

get geometrically accurate inverse displacement mapping is by ray-tracing.

Displacement maps have also been directly rendered in ray-tracing, using iterative root-finding

methods [22] in software rendering. In older hardware, before fragment programs, slicing planes

were used which approximate ray-tracing by sampling at discrete points a rendering pass for each

sample [13]. Now, programmable fragment processors are beginning to be used for ray-tracing.

View-Dependant displacement mapping precomputes all possible ray intersections, and looks them

up at render time, using large amounts of texture memory [54]. Most like our approach is the sample-

based ray-tracing of displacement maps in [23]. However, our method uses a different method for

determining exact ray entry and exit points, takes more thantwice as many samples per ray, and

achieves higher frame rates.

Fragment-based solutions benefit from automatic level of detail (LOD): far or small parts of an

object that appear small on the screen, contain less fragments, rendering more quickly, and large

or near parts render more accurately. In comparison, achieving this type of LOD geometrically

would require adaptive tessellation, which is complicatedto implement and not available in most

hardware. In addition, fragment based algorithms benefit from early Z rejection which completely

avoids processing already occluded fragments.

5.2 Algorithm

We assume that displacements are between 0 and some maximum depth called the displacement

scales. Displacements are stored in a grayscale texture image withelements in[0, 1], where the

actual displacement iss times the value stored in the displacement image.
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5.2.1 Planar Displacement

Here, we make some constraining assumptions which simplifythe problem, and in Section 5.2.2 we

will show how to transform the general case into this case. Weassume that the reference surface is

planar and rectangular. We also assume that its texture coordinates form a rectangle in texture space.

This gives us a simple linear transformation between world space and texture space. It also allows

us to simply reject intersections outside the texture spacerectangle to get correct silhouettes.

From the reference plane, we generate a volume which we will call the displacement volume

in object spaceVo and the corresponding volume in texture spaceVt. Vo is the volume created by

sweeping the reference plane a distance ofs along its normal.Vt is the 2D texture rectangle of the

plane, swept along a 3rd axis from 0 to 1. The transformation matrix that transformsVo to Vt will

be calledMot.

The displacement volume is rendered as six quadrilaterals in OpenGL. View rays are first trans-

formed into object space, and then transformed byMot into texture space. The texture space ray

origin and direction are interpolated and passed to a fragment program. At each fragment we sam-

ple the displacement map atN discrete points along the ray through the displacement volume.N is

chosen based on the number of texture accesses available in particular hardware, and the complex-

ity of the surface. This type of sampling is used since texture samples whose location depends on

the results of previous samples (such as in standard iterative root-finding techniques) are expensive

and limited in current graphics hardware. Sampled displacement valuesdi are compared to the ray

heightshi at each point to determine which side of the surface the ray ison at each sample position.

view ray secant line

1 j − 1 j N

displacement

reference surface

Figure 5.1: Algorithm:di are shown in blue,hi in green, and the intersection point in red

We take the interval between the sample nearest to the viewer, j, wherehj > dj and its neigh-

boring sample,j − 1, to contain the intersection of the ray with the surface (seeFigure 5.1). The

surface is then approximated by the secant line fromdj to dj−1. Finally, we calculate texture coor-

dinates, which are used to index texture and normal maps, as the intersection of this secant line with

the view ray.

In comparison, using the position of samplej to index texture and normal maps texture coordi-
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nates, rather than performing the final step, will generate results equivalent to volumetric slicing, as

in [13], but with a single rendering pass.

5.2.2 Arbitrary Meshes

In the planar case, in order to render silhouettes accurately, we assume that any intersections outside

of the plane’s rectangle in texture space are not on the plane, and don’t render them. This assumption,

along with the assumption of planarity, must be removed in order to support arbitrary meshes.

There are two problems when generalizing this algorithm. First, exact entry and exit points

are required for rays intersectingVo (the volume generated by displacing a single triangle by the

maximum displacement). Second, finding a linear transformation that maps rays inVo into the

corresponding volume in texture space:Vt.

Figure 5.2: A dis-
placement volume
in texture space (tri-
angular prism)

Figure 5.3: A dis-
placement volume
in object space
assuming spheri-
cally interpolated
normals.

Figure 5.4: A displacement volume in
object space assuming linearly inter-
polated normals, shown shaded on the
right to emphasize that the volume is
curved.

But what do the volumesVo andVt look like? Vt is a triangular prism defined by the texture

coordinates of the current triangle, with a depth of 1 as shown in Figure 5.2.Vo is more compli-

cated. If we were to assume spherical interpolation of normals - as displacement mapping is usually

implemented in software renderers with geometric subdivision - we would get the volume shown

in Figure 5.3. It would be very difficult to compute entry/exit points into such a volume, and there

is clearly no linear mapping from this curved volume to a prism. For simplicity, we must assume

linear interpolation of normals, which generates the volume shown in Figure 5.2.2. Although two

of the boundaries are now planes, the other three boundariesto this volume are curved bilinear sur-

faces. Intersecting rays with those surfaces would still betoo complicated, and there is still no linear

transform between this volume and a prism. Now we choose to approximateVo by subdividing it

into volumes with planar boundaries, and for which there exists a linear transformation into texture

space. We subdivideVt into three tetrahedrons, and we approximateVo by three corresponding

tetrahedrons. In a connected mesh, we must assure that neighboring displacement volumes are split

into tetrahedrons along the same edges. This can be done simply by reordering all triangle vertexes

in order of their index into the vertex array as shown in Hirche et al. [23].
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Where our method differs substantially from the tetrahedral renderer in [23] is in how we calcu-

late entry and exit points through the tetrahedrons. Now that each tetrahedron has a linear mapping

to texture space, we compute entry and exit points of each rayby simple line/plane intersections.

We simplify this further by performing the intersections inaxis aligned tetrahedron space where the

four planes arex = 0, y = 0, z = 0, andx + y + z = 1.

Detailed Algorithm Overview

Initialization:

• generate three tetrahedrons for each triangle

• build transformation matrices from object space to tetrahedron space

• build transformation matrices from tetrahedron space to texture space

Rendering:

• render all four triangles of each tetrahedron passing vertex position and both matrices to the

vertex program.

• The vertex program computes the ray entry point and direction in tetrahedral space and texture

space, these are interpolated linearly over each triangle and passed to the fragment program.

• The fragment program intersects the ray, in tetrahedral space, with the the planes of the tetra-

hedron. The nearest positive intersection parameter is chosen (ignoring the intersection with

the face being rendered). This parameter is then used directly on the ray in texture space.

Sample points for the ray-tracing algorithm are computed as:

p1 = r ∗ q ∗ 1

N+1

pi+1 = pi + r1

HereN is the number of samples,p1 is the ray entry point in texture space,r is the ray

direction in texture space, andq is the exit point intersection parameter. Using these sample

points, the rest of the ray-tracing algorithm proceeds as shown in Section 5.2.1
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5.3 Displacement Mapping for LOD

Since the performance and accuracy of this algorithm depends directly on the the number of frag-

ments rendered, level of detail (LOD) is automatic: parts ofthe object appearing larger on the

screen are rendered in more detail. This makes this method useful for LOD of any object, not just

ones which would be naturally displacement mapped (such as brick walls). This can be achieved by

precomputing a displacement map and bump map given a low-polygon and a high-polygon version

of the same object.

Figure 5.5: A smooth sphere rendered as a low detail sphere plus a displacement map.

Most current game engines already use similar techniques, computing bump-maps to make a

low-polygon model look almost as good as the high-polygon version. However, a common com-

plaint is that the silhouette of the object clearly shows thelow resolution of the geometry when bump

mapping is used. Using true displacement mapping gives muchhigher quality including correct sil-

houettes and parallax effects. Some example renderings of our algorithm being used for LOD are

shown in Figures 5.5 and 5.9.

5.4 Improving performance

5.4.1 Early Z Rejection

The performance of our technique is bound by fragment processing. Many fragments may be oc-

cluded, and do affect the final image, but are processed anyway depending on the order they are

rendered. Modern GPUs can discard fragments before runningthe fragment program if the contents

of the depth buffer indicate that they are already occluded.This means that it is in our best interest

to render scenes from front to back in scenes with high fragment program costs. Sorting polygons,

or just tetrahedrons, can save us from this overdraw problem, but introduces extra CPU and band-

width load. For opaque objects, another solution is to simply render the reference object - just the
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original low-resolution triangles, not the extruded volumes - into the depth buffer before rendering

the displaced volumes with the expensive ray-tracing shader. This achieves a similar speed improve-

ment without the CPU and bandwidth hit. Note that early z rejection optimization requires that the

shader does not compute the displaced depth value; this works fine unless it is necessary for the

intersections of objects to be rendered accurately.

5.4.2 Tight Fitting Displacement Volumes

In our formulation thus far, each displacement volume has been extruded by the same distance along

the object’s normals. Depending on the displacement map andthe tessellated resolution of the mesh,

all displaced volumes are not likely to contain actual displacements over the full range(0, 1). We

can optimize displaced volumes by checking the minimum and maximum displacements for each

triangle given a certain displacement map. Fitting the displacement volume to actual minimum

and maximum displacements will improve both performance and accuracy. Ray-tracing through

tighter bounding volumes means more accurate ray tracing results, since the same number of samples

are taken over a smaller distance. In addition, smaller volumes means that fewer fragments are

processed, particularly at grazing angles.

Figure 5.6: A displacement mapped object with full size displacement volumes on the left, tight
fitting volumes on the right.

There are cases where the accuracy and performance improvements are noticeable. Notice the

horizontal line in near the center of the sphere in Figure 5.6. It is not straight on the left due to

sampling aliasing but in the optimized case it is rendered correctly. LOD displacement maps, as in

Section 5.3, commonly contain a large range of displacements over the whole object, but not nec-

essarily all in a single triangle. Therefore, LOD displacement maps often benefit from performance

increases with tighter displacement volumes. For the modelin Figure 5.6 we have measured frame

rate increases approximately 65% when using tight fitting displacement volumes over full size ones.
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5.4.3 Variable Sampling Rate

With shader model 3.0 hardware, looping support and conditionals provide us with the possibility

of taking a variable number of samples depending on the ray. Rays that are nearly normal to the

surface are vertical in texture space and require few samples. Rays that are nearly parallel to the

surface polygon are horizontal in texture space and requiremore samples. Ideally, one sample

would be taken for each pixel in the displacement map that theray crosses (when projected on the

the texture); this would eliminate all aliasing. This couldbe achieved by separating sample points

by a uniform distance in the 2D texture plane (1 pixel size), rather than taking a uniform number

of samples. This would reduce aliasing at grazing angles, where more samples are needed, and

improve efficiency in direct views. The number of samples taken per fragment would be spatially

coherent, which is required for current hardware to actually achieve a speed improvement since a

group of fragments renders only as fast as the slowest fragment. We have not yet implemented this

method, but it seems that it should improve performance and/or quality.

5.4.4 Silhouette Displacement Mapping

Figure 5.7: True displacement mapping is shown on the left, on the right, only the silhouette regions
are displacement mapped, the center is simply bump-mapped.

We have tested a more drastic optimization, that we call silhouette displacement mapping, which

applies full displacement mapping only to polygons near thesilhouette of the object. Other polygons

receive only bump mapping. With geometric-subdivision-based methods, this would be difficult,

requiring adaptive tessellation to line up the detailed part with the coarse part. With our method,

we simply reduce the displacement scales away from the silhouette. Wheres is zero, we render

only bump-mapped triangles. Parts withs non-zero are near the silhouette and render with full

displacement mapping.
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5.5 Results

Our algorithm has been implemented using OpenGL with ARB vertex program and fragment pro-

gram extensions. The algorithm will run on a wide variety of hardware (anything supporting

ARB vertexprogram), but has been tested primarily on Radeon 9700/9800graphics cards. Perfor-

mance results given here were measured on a Radeon 9700/Athlon 2500+ system in a full 640x480

window.

Figure 5.8: Results of the planar displacement mapping algorithm: upper right object is made from
six displacement mapped planes rendered in four passes, others are rendered in a single pass with a
single plane.

For the planar algorithm we have been able to get 15 samples per ray before running out of

resources (we are limited by ALU instructions) using ARBfragmentprogram. To achieve higher

sampling rates, multiple rendering passes are performed. The single pass planar algorithm gets up

to 150 fps in with every pixel in a 640x480 window being processed. Results are shown in Figure

5.8.

Figure 5.10 shows the results of first (on top) rendering a rock displacement map directly on

an approximate sphere, and second (on the bottom) blending the LOD displacement map used for

Figure 5.5 with the rock displacement map to create a much smoother result.

In the generalized algorithm we were able to take 11 samples per ray, with the added overhead

of computing ray entry and exit points. Not that this is significantly more than the 4 samples that a
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previous algorithm took [23]. Frame rates vary from model tomodel with the generalized method,

since there can be a lot of overdraw. The face model shown in Figure 5.9 renders at 45 fps with.

the spheres in Figures 5.10 and 5.5 render at minimum 40 fps. Early Z rejection gives the following

improvement: with no sorting we get 25 fps for the sphere in Figure 5.10; pre-drawing to the depth

buffer increases the frame rate to 36; sorting tetrahedronsincreases the frame rate to 40.

The algorithm proposed here can render displacement mappedplanes and arbitrary objects us-

ing fragment processing hardware. The method we have described is more efficient than previous

methods. It is useful for both planes and arbitrary objects,and has also been shown to work well for

level of detail rendering.
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Figure 5.9: Level of detail rendering with displacement mapping. Two views of an object rendered
with our algorithm. The overlay on the right shows the coarsegeometric resolution of the base mesh.
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Figure 5.10: A coarse sphere displaced by a rock displacement map on the top, and combined
LOD displacement map and rock displacement map on the bottom. Note how the bottom sphere is
smoothly curved while the top one has a more polygonal shape.
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Chapter 6

Systems and Experiments
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We have developed two systems for acquiring and rendering different types of hierarchical

graphics models. The first uses triangle meshes for the macroscale, and represents both the meso

and micro scale with a dynamic texture. The second system also represents the macro scale using

a triangular mesh. However, in our second system the meso scale is represented separately with a

displacement map, and only the micro scale is modeled using adynamic texture.

6.1 Dynamic Textured Geometry

We have performed many experiments using dynamic textures in combination with rough polygonal

meshes. Considering that the geometric information acquired by the methods described in Chapter

3 are often inaccurate and sparse, dynamic textures parameterized in view direction can be used

to account for small scale geometric inaccuracy (meso scale). In addition, the dynamic texture will

reproduce complex surface reflectance (micro scale). Unfortunately, in this case, the meso and micro

information are linked, and both only parameterized in viewdirection, meaning the light cannot be

made to move around independently of the view (but can potentially move with respect to the object

when the view changes if that is how the object was captured).However, a more elaborate setup

with a rotating camera, and an array of lights could be used toovercome this problem in the future.

Objects modeled in this way are rendered in graphics hardware by modulating the dynamic

texture basis, as described in detail in Chapter 4. We have implemented two types of geometry

acquisition in our experiments, structure from motion, andshape from silhouette. The separate

acquisition systems and results with the two methods will bedetailed in the following subsections.

6.1.1 Structure from Motion

SFM acquires geometry based on corresponding feature positions over many views. In order to

get the feature correspondences, we use tracking. Texturedregions are tracked using the XVision2

tracking libraries which provide very useful and efficient SSD trackers [30]. These trackers work

best on textured regions that are locally unique. We have features manually selected by the user,

since trackable regions are often sparse and we prefer to place them in strategic places for modeling

purposes, such as the apex of a roof for example.

After the user identifies several features in the camera viewof the target object. Then, from the

live video stream, we track the locations of these features in real-time. We record the video stream,

along with the feature positions while the user rotates the object through various viewing directions.

We make the simplifying and restrictive assumption that alltracked points are visible in all video

frames.
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Using the tracked feature positions from many different views, we can compute a rough 3D

structure using methods described in Section 3.1.

Early experiments, such as the flower in Figure 6.1, use separate dynamic textures for each

quadrilateral. Each one is warped from each frame of the video sequence, to a square textures.

Figure 6.1: A flower rendered with a very simple geometry of four quadrilaterals (shown on the
bottom right), each dynamic textured with respect to viewing direction.

In more recent experiments, such as the house shown in Figure6.3, memory usage was signif-

icantly reduced. First, we use only a single dynamic texture. The mapping from image space to

texture space is defined by assigning each vertex a texture coordinate, which we generate automat-

ically as the vertex’s average camera space projection. A set of triangles is generated for the model

using Delaunay tessellation of the texture coordinates, and potentially edited manually with our GUI

shown in Figure 6.2. Each view is warped to texture space by affine warping of the pixels in each

triangle. Additionally, the dynamic texture is computed inYUV color space as described in Section

4.3, further reducing memory requirements by allowing reduced number and resolution of U and V

basis elements.

Figure 6.2: The system built for viewing and editing tracking data.
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In our system, the camera or object could be oriented by hand.However, the best results were

obtained using a tripod and stick to orbit the camera around the object. This setup achieves uniform

sampling (if the tripod is moved smoothly), and also keeps the object centered in the camera view,

which is essential for the structure from motion algorithm.After tracking feature points, the sys-

tem allows the user to interact with the data in order to potentially identify and remove or correct

inaccurately tracked features. Figure 6.2 shows a screenshot of the system’s user interface.

As can be seen, in extreme cases, such as the flower in Figure 6.1, a complex and intricately

detailed object can be represented with very few polygons atthe expense of a large texture basis.

The polygonal mesh for this flower contains only four quadrilaterals. However, this puts a heavy

weight on the dynamic texture to account for very large geometric inaccuracies. It was necessary, in

this case, to use 100 basis images for rendering, and blurriness artifacts were still present.

The house shown in Figure 6.3 has a more reasonable geometricstructure, but still requires a

fairly large basis (50 to 100 elements). In addition, our constrained capture setup which requires the

visibility of all feature points in all video frames, results in fairly small possible variation in view-

ing angle for most objects. The next subsection describes a system which acquires more accurate

geometry and allows larger variation in viewing direction.

Figure 6.3: 4 new views of a house rendered with dynamic textures (parameterized in viewing
direction)

6.1.2 Shape from Silhouette

To capture geometry using shape from silhouette, we first place the object on an automatic turntable.

Using a stationary camera, we take a set of images from views on a ring around the object. We may

move the camera to get a second or more rings of views from different heights. A calibration pattern

on the turntable is used determine the camera’s position andorientation with respect to the object.

A colored piece of paper is mounted behind the object for use when detecting the silhouette.

We have implemented the method described in 3.2.1 to segmentthe object from the background,

giving us a silhouette image. Using the segmented image, ourimplementation of the marching

intersections SFS algorithm described in Section 3.2.2 wasimplemented to compute the visual hull.
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As in the SFM case, we apply a view-dependent dynamic textureto the resulting geometric model

to account for its inaccuracy. However, applying the dynamic texture is slightly more difficult since

we have a much larger range of views, and a closed mesh.

Figure 6.4: Texture atlas: on the left is a rendering visualizing the different charts on the object; on
the right is the texture atlas.

Proper behaviour of our system depends on computing a one-to-one mapping from each point on

the object’s surface into a 2D texture image. We represent this mapping by a 2D texture coordinate

stored along with each vertex, and linear interpolation within each triangle. Computing such a set of

texture coordinates for a general mesh is a very difficult problem. This problem was solved easily in

the case of SFM in Section 6.1.1 where observed views were restricted to a small range. However, in

the case of SFS, we have an arbitrary polyhedral mesh, which requires a much more general method

for automatically generating texture coordinates.

The method from Levy et al. [32] was implemented, and works sufficiently well. This method

breaks a polygonal mesh intochartsusing a region growing algorithm. The algorithm segments the

mesh into the desired number of charts preferring to split along regions of high curvature. Each

chart is then flattened into 2D using conformal mapping. Conformal mapping preserves angles so

that the error between the three angles of each triangle in texture space and the same triangle in 3D

is minimized (in the least squares sense). We have also implemented a version which uses multi-

dimensional scaling (MDS) as described in [60]. MDS works similarly, minimizing the error in

distance along the surface of the 3D mesh to distance in 2D texture space; results are comparable.

All of the charts are then packed together into atexture atlas. Packing is performed using a

greedy algorithm, ordering the charts from largest to smallest. Figure 6.4 shows an example where

the texture atlas is shown next to the object with charts colored uniquely.

After texture coordinates are generated, warping the example views into texture space requires

an extra trick. Some parts of the model are occluded from someviews, so we cannot simply warp

triangles from the camera views into texture space. We overcome this using a depth buffer. For each

view, we generate a depth image where each pixel represents the depth from the camera to the visual
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Figure 6.5: Two views of a pig rendered with view
dependent dynamic textures.

Figure 6.6: A scene with several dynamic textured
objects (10 dynamic textures in total)

hull. We then warp this depth image into texture space. Now, when we warp the actual image pixels

into texture space, we interpolate the actual depth of each vertex relative to the camera across each

triangle. So, at each pixel in the texture, we know the depth of that point on the geometry, and we

know (from the depth texture) the depth that the pixel we are potentially placing there has. If they

are not the same (to some tolerance) that element of the texture is occluded. After marking occluded

areas in the texture for each view, we fill those parts in with the mean value as computed over all

views where that part was visible. In this way, we can use a single dynamic texture even though

parts of it are not visible in every view.

Figure 6.7: Algorithm overview for rendering geometry withdynamic texture
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After this warping step, the computation and rendering of the dynamic texture take place in the

same way as described in Chapter 4. An overview of how the rendering algorithm is executed on

the CPU and GPU is given in Figure 6.6. An example object captured with this system is shown in

Figure 6.5 and a scene filled with several objects is shown in Figure??. On a 3.2 GHz CPU with

NVidia GeForceFX 6800GT graphics accelerator, the pig model renders at 115 fps, and the scene

with several dynamic textured models (a total of 10 dynamic textures) renders at 35 fps.

6.2 Geometry, Displacement Mapping, and Dynamic Texture

This thesis is focused on the rendering aspects of graphics models, and since an implementation of

this type of algorithm was not readily available, we have used other methods in order to test the

integrated rendering system. Ideally, we would like to use SFS or SFM, in combination with an

algorithm which computes displacement maps from images such as the method recently proposed

by Vogiatzis et al [53].

The geometry and texture have been captured in independent steps. First, very detailed geometry

was captured using a laser scanner. Using 3D modeling software, we performed post-processing on

the detailed geometry to compute a low-polygon model and corresponding displacement map.

Then, the dynamic texture part of the model was acquired separately and aligned manually with

the geometric model. To acquire lighting variation in a dynamic texture, we mounted the object and

camera rigidly on opposite ends of a rod. Next to the object wemount a matte sphere, and the rod is

attached to a rotating tripod as shown in Figure 6.8.

Light

Camera

Object

Sphere

Tripod

Figure 6.8: The apparatus used for ac-
quiring light variation

Figure 6.9: Example images taken as shown in the adjacent
figure

Placing the apparatus in natural, directional light (from the sun), we rotated the tripod manually

in a grid pattern, while capturing many images. Some exampleimages are shown in Figure 6.9.
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After sampling the images, the user identifies the sphere in asingle image.

Figure 6.10: Four views each with four different lightings of a displacement-mapped and dynamic-
textured Korean face mask from the Shilla period.

The light direction is calculated in each image by solving a simple set of linear equations. We

can compute the normal of each pixel in the sphere, and then byusing the standard diffuse lighting

equation, we relate the normal and pixel color to the light vector by the standard diffuse lighting

equationc = n • l + a, wherec is the pixel brightness,n is the pixel normal,l is the light direction,

anda is the ambient light. With many pixels, a system of equationsis built and solved forl anda.

Using the light direction as a parameter, we compute a dynamic texture as described in Chapter 2.

A ceramic mask and a model house made from natural wood, bark,etc. were captured using this

method and the resulting renderings are shown in Figures 6.10 and 6.13, respectively. The algorithm

used for rendering, and how it is mapped to the CPU and GPU is shown in Figure 6.11. The examples

render at approximately 100 fps in a 640 by 480 window using NVidia GeForce 6800GT graphics

hardware and a 3.2GHz CPU.

Representing lighting variation requires very few basis elements. In both the house and face

examples, only eight grayscale basis images were used, and no basis images were used for color

information. The first four basis images are shown in Figure 6.12. The hardware rendering imple-
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mentation for only 8 basis images requires only three texture accesses, two dot products and two

additions, which allowed it to easily be inserted into the displacement mapping fragment program

in place of the standard lighting computation. This allows the composite rendering to take place in

a single pass, and achieve performance approximately equalto the displacement mapping code with

standard bump-mapped lighting.

Figure 6.11: Algorithm overview for rendering geometry, displacement map, and dynamic texture.

Figure 6.12: First 4 basis images (of 8) used for lighting theface artifact. Intensities have been
remapped so that black is -1.0, gray is 0.0 and white is 1.0.
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Figure 6.13: Four views each with three different lightingsof a displacement-mapped and dynamic-
textured model house.
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Chapter 7

Discussion
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7.1 Future Work

7.1.1 Geometric Capture from Images

The system shown in Section 6.1.2, which captures objects using shape from silhouette and view-

dependent dynamic textures, is based completely on 2D images, and is therefore quite easy to use.

However, the system used for acquiring geometry, displacement maps, and dynamic texture in Sec-

tion 6.2, additionally makes use of 3D input for acquiring displacement map data. Future work

would be to compute displacement maps from images given an approximate geometry. Some work

has been done on this problem by making use of the parallax between multiple views [53]. In ad-

dition, such a method should be incorporated into a system easy enough to be used by people not

trained in computer graphics, like the system in Section 6.1.2.

7.1.2 Displacement Mapping

The displacement mapping algorithm shown in Chapter 5 renders in a pixel shader on graphics

hardware. Recent advances in hardware allow texture accesses during vertex processing, as well

as hardware-accelerated geometric tessellation. Since both vertex and pixel based methods for dis-

placement mapping in hardware are quite new, the performance of these methods should be com-

pared, to determine which is actually most efficient using available graphics cards.

7.1.3 Dynamic Texture

In this thesis, we have shown examples which use dynamic textures for representing lighting varia-

tion, and others which use dynamic textures for representing view-dependency. However, we have

yet to use dynamic textures for both effects simultaneously. There are two reasons for this. First, it

is very time consuming to simultaneously capture many lighting directions and viewing directions,

since it would mean sampling a 4-dimensional function. Second, interpolation of coefficients in two

dimensions is simple, but becomes complicated when the number of dimensions increases.Tensor

Textureshave shown how different dimensions of variation can be separated using tensor mathe-

matics [52]. However, this requires that for each viewing direction there is a set of images for each

lighting condition, rather than a random collection of images where each has a view and lighting

direction. This makes capturing such textures very difficult, which explains why the examples in

their papers are made from computer renderings, and not realscenes. Allowing tensor texture like

separation, with more flexible inputs would be a very useful future result.

A problem which was pointed out in Section 4.7 is that when acquiring a view-dependent dy-

namic texture, we may warp some grazing angle views containing very few useful pixels into texture
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space, and then end up unnecessarily simulating the resulting blurred image during rendering. The

problem is that the current method solves for a basis that minimizes the error between recomputed

texture images (after being projected onto the reduced rankbasis) and the original texture images

for any view. The key to solving this problem is to realize that we do not care about errors between

texture images. The important error is the difference between an original camera view, and the

recomputed texture for that view, mapped onto the object andprojected onto that camera. A math-

ematical reformulation which minimizes this error would achieve much better results with fewer

basis vectors.

7.2 Conclusions

We have presented a new graphics model based on a hierarchy ofscales of detail. The model was

designed to balance ease of acquisition from images with efficient rendering. The three levels of

detail - macro, meso, and micro - are represented using triangle meshes, displacement mapping, and

dynamic textures, respectively. We have shown how this model can be rendered in real time using

current hardware graphics accelerators. Also, we have presented systems for capturing this type of

graphics model.

The low resolution macro scale was captured using image-based modeling algorithms. Two

methods, shape from silhouette and structure from motion, were implemented and described in

detail. Shape-from-silhouette proved more useful for capturing the full range of views of a small

object, while structure from motion is more useful for largescenes, where silhouette information is

not available.

For the rendering of the meso scale, a novel displacement mapping algorithm was developed,

presented and tested. The method uses modern graphics hardware to ray trace displacement-mapped

surfaces in real-time.

For the micro scale, we described dynamic textures, which can represent a texture which varies

with respect to light or view direction. Several efficient dynamic texture renderers were designed and

implemented on various levels of consumer graphics hardware. Dynamic textures parameterized by

viewing direction were used to represent meso scale structure in some cases. Micro scale structure

was represented by dynamic textures parameterized in lightdirection.

An easy to use system was built for capturing models with shape from silhouette and view

dependent dynamic textures. These models are very easy to capture, but have only two scales,

geometry and dynamic texture, and cannot be rendered with varying lighting conditions. A plug-in

was developed for AliasWavefront’s Maya renderer which canrender captured objects of this type
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in scenes which can also contain traditional graphics models.

A second system was built for making the full 3-tiered models. This system uses a laser scanner

to acquire the geometric structure, from which a low resolution triangle mesh and corresponding

displacement map are extracted. The lighting variation wascaptured separately using cameras. The

final results can be seen in Figures 6.10 and 6.13.

These methods were proven useful in several experiments where real objects were captured and

rendered. We demonstrated successful rendering of otherwise difficult cases such as flowers and

other natural materials.
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