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Abstract

In both computer graphics and computer vision, scenes gjedtsimust be represented mathemati-
cally in some way. Representations tailored to ease sceugsition in vision, may be inefficient to
render. Likewise, models designed specifically for effitiemdering may be difficult, if not impos-
sible, to capture from cameras. In this thesis, we explotergi@al graphical models which are both
convenient to acquire from images, and well suited for teaé rendering using modern graphics
hardware.

Our representation is a hierarchical hybrid image/geontetsed model for graphics objects and
scenes. Each of three scales of detail macro, meso, micepiiesented differently in an attempt to
most efficiently store, render and capture the model. Macatess the large scale or overall shape,
which we represent using a low-resolution polygonal mestesd/scale detail, which is defined
loosely as lying between macro and micro, is representedjudisplacement mapping, for which
a novel hardware accelerated rendering algorithm is ptederAt the micro scale, light-surface
interaction properties are represented using a parammetetéxture mapping technique called dy-
namic texture, where a linear texture basis is precomputed éxample images and blended when
rendering to reproduce different lighting conditions.

A system was built and used to capture this type of model freah-world objects, which were
then rendered, and integrated into virtual scenes. Adtitlp, experiments were performed which

evaluate each subsystem independently.



Acknowledgements

Dr. Martin Jagersand initially developed the dynamic tegtidea.
Dr. Dana Cobzas implemented the structure from motion @lgarwhich we used.
Alias/Wavefront provided Maya licenses free of charge Whi@re used in our system.

Neil Birkbeck implemented some parts of the system inclgdire automatic texture coordinate

generation, camera calibration, and user interface.



Table of Contents

1 Introduction 1
2 Review: GraphicsModeling 6
2.1 ConventionalModels . . . . . . . .. . e 7
2.1.1 PolygonalModels . ... ... ... ... .. ...
2.1.2 CurvedSurfaceModels. . . . . .. .. ... ... ... 8
2.1.3 Lighting. . . . ... .. . . e 8
2.2 Image-BasedModels . . . . . ... ... 9
2.3 HybridModels . . . . .. ... .. 10
2.4 GraphicsHardware . . . . . . .. .. .. . .. .. e 11
3 Review: Building Geometric Models from Images 13
3.1 StructurefromMotion . . . ... L e 14
3.1.1 Results . . ... e 16
3.2 Shapefrom Silhouette . . . . . . ... ... 17
3.2.1 Silhouette Extraction . . . . . . ... ... 17
3.2.2 Intersection Algorithms . . . . . .. ... .. ... ... 18
3.23 Results . . .. . e 22
3.3 Discussionand Comparison . . . . . . ... e 23
4 Dynamic Texture 24
4.1 PreviousWork. . . . . 25
4.2 ThEOIY . . . . o o 6 2
4.3 ColorSpace . . . . . . . e e 27
4.4 Per-PixelRendering . . . . . . . . . e e 27
4.5 Hardware Accelerated Rendering . . . . . . . . . . . ... ... 29
45.1 Multi-passBlending . . ... ... ... ... ... 29
4,5.2 Multi-pass with Programmable Hardware . . . ... ... ...... ... 30
453 SinglePassRendering . . . ... ... ... ... e 31
4.6 TheMayaPlug-in. . . .. ... . . . . . . . . e 32
4.7 Experiments . . . . . ... e 33
4.7.1 LightVariation . . . ... ... ... . ... e 33
4.7.2 View\Variation . . . . . ... 43
5 Displacement Mapping 36
5.1 PreviousWork . . . . . . . . . e 37
5.2 Algorithm . . . . . . . e 38
5.2.1 PlanarDisplacement . . . . . . .. ... ... ... e 39
5.2.2 ArbitraryMeshes . . . . . .. 40
5.3 Displacement MappingforLOD . . . .. ... .. ... ... ... ...... 42
5.4 Improvingperformance . . . . . . . . .. e e 42
541 EarlyZRejection . . . . . . . . . . . ... 42
5.4.2 Tight Fitting DisplacementVolumes . . . . . . .. ... ... ... .. 43
5.4.3 \Variable SamplingRate. . . . . ... ... ... ... ... .. .. 44
5.4.4 Silhouette DisplacementMapping . . . . . . . . . ... 44

5.5

Results. . . . . . . . . . . . . . e e e 45



6 Systemsand Experiments 49

6.1 Dynamic Textured Geometry . . . . . . . . . . .. e 50
6.1.1 Structure fromMotion . . . . ... ... 50
6.1.2 Shape from Silhouette . . . . . . ... ... . oL 52
6.2 Geometry, Displacement Mapping, and Dynamic Texture. .. .. . . . ... ... b5
7 Discussion 59
7.1 FutureWork . . . . . e 60
7.1.1 Geometric Capturefromlmages . . . . .. ... ... ... .. ... 60
7.1.2 DisplacementMapping . . . . . . . . .. e 60

7.1.3 DynamicTexture . . . . . . . . . e 06
7.2 Conclusions . . . . . . e 61
Bibliography 63



List of Figures

11

2.1

o rw MR

4.1

4.3
4.4

4.5

a o ago aoao
(o] ~ [e2N &} ArwN P

o
©

5.10

Overview of how the Macro, Meso, and Micro scales aregsgmted, and resulting
renderings . . . . . .. e e e e e e e

Simplified view of the graphics pipeline. Programmaliimponents are shaded in
0 = /2

A few sample inputs to the SFM algorithm with tracked deafpositions . . . . .
SFM results triangulated geometric structure and aenémgl (rendering uses view
dependentdynamictexture) . . . . . . . . ... e,
Polyhedral Visual Hull: the bounding polygons of thewrak are calculated .
Visual hull with marching intersections: ray intersees of a grid pattern with the
volumearestored . . . . . ...
An elephant captured using SFS with a stationary cammetduaintable. A few of
'E)he input images are shown on top, and the reconstructetiaiéfs shown on the
OOM. . . .
Results using the HAVH on algorithm on a hand with threeeas . . . . . . . .

An example where per pixel dynamic texture renderingizessary. The solid gray
object is the true object. The dashed quadrilateral is tipecagimate geometry that
the dynamic texture will be applied to. The light gray canseiradicate sampled
viewing directions, the black camera is the new desired vi¢gte that none of the
sample views can see the entire indentation while the neweas. . . . . . . . .
Two renderings from Maya that mix dynamic textured ots;eaptured fromi |mages
with conventional hand modeled objects. . .. .

A face lit using a dynamic texture with five basis i |mages ..............
The dynamic texture basis used for lighting the face gufé 4.3. The mean is
shown in the upper left. Other elements scaled so that bfaek, iwhite is +1 and
grayis 0.. . . . . .
Texturing a rotating quadrilateral with a wreath. Top: varping a flat texture
image. Bottom: by modulating a dynamic texture basis whicthén warped onto
thesamequad . . . . . . . . . ...

Algorithm: d; are shown in blugy; in green, and the intersection pointinred . . .
A displacement volume in texture space (triangulampyis. . . . . . . . ... ..
A displacement volume in object space assuming sphigricterpolated normals.
A displacement volume in object space assuming lindatlrpolated normals,
shown shaded on the right to emphasize that the volume igdury . . . . . . ..
A smooth sphere rendered as a low detail sphere pluslackspent map. . . . . .
A displacement mapped object with full size displacetmelumes on the left, tight
fitting volumesontheright. . . . . . . .. ... ... .. .. . . . ..
True displacement mapping is shown on the left, on tht,rignly the silhouette
regions are displacement mapped, the center is simply boagped. . . . . . . .
Results of the planar displacement mapping algorithopeuright object is made
from six displacement mapped planes rendered in four pastiesrs are rendered
inasingle passwithasingleplane. . . . . .. ... ... ... ... . ... ..
Level of detail rendering with displacement mapping oMews of an object ren-
dered with our algorithm. The overlay on the right shows tbarse geometric
resolution of thebasemesh.. . . . . .. .. .. ... ... L
A coarse sphere displaced by a rock displacement malpeotop, and combined
LOD displacement map and rock displacement map on the botitwte how the
bottom sphere is smoothly curved while the top one has a nayggnal shape.

45

47

48



6.1 A flower rendered with a very simple geometry of four qulatirals (shown on the
bottom right), each dynamic textured with respect to vigndirection. . . . . . . 51
6.2 The system built for viewing and editing trackingdata. ... . . . ... ... .. 51
6.3 4 new views of a house rendered with dynamic texturesi(paterized in viewing
direction) . . . . .. e 52
6.4 Texture atlas: on the left is a rendering visualizingdliferent charts on the object;
ontherightisthetextureatlas. . . ... ... ... ... ... ... . ..... 53
6.5 Two views of a pig rendered with view dependent dynamitutes. . . . . . . . . 54
6.6 A scene with several dynamic textured objects (10 dyodemiuresintotal) . . . . 54
6.7 Algorithm overview for rendering geometry with dynartéqxture ......... 54
6.8 The apparatus used for acquiring light variation . . . ...... . ... ...... 55
6.9 Example images taken as shown in the adjacent flgure e 55
6.10 Four views each with four different lightings of a deptment- mapped and dynam|c—
textured Korean face mask from the Shilla period. . 56

6.11 Algorithm overview for rendering geometry, dlspla«mhmap and dynam|ctexture 57

6.12 First 4 basis images (of 8) used for lighting the fac#aatt Intensities have been
remapped so that black is -1.0, gray is 0.0 and whiteis1.0.. . . . . . ... .. 57

6.13 Four views each with three different lightings of a thispment-mapped and dynamic-
textured modelhouse. . . . . . . . .. ... 58



Chapter 1

| ntroduction



The level of detail attainable by real-time rendering epgiis quite incredible, and increasing
at an astounding rate. Texture mapped triangles have beeéripathe most part still are, the basic
geometric primitive with which these detailed scenes areleterl. However, it is beginning to
become clear that the continued increase in triangle mestutéon is no longer the most efficient
way to increase the realism of such scenes. The main reasahigas that rendering hardware
has evolved such that most of the processing power powenitahie at the pixel level. Simply
increasing geometric resolution does not take full adwgatd this hardware.

Recently, video game engines have begun to diverge fromhiespphy that more triangles
necessarily make a more realistic image. The Doom Il en§iom ID software, for example,
is heavily focused on realistic shading using per-pixéehtiigg and bump-mapping on nearly all
surfaces, and extensive dynamic shadowing [28]. Whilegustatively few polygons, the realism
achieved by this game is very impressive.

When graphics models are acquired from real world scenesobjettts for the purposes of
efficient rendering, the same principles should apply. @dth it may be possible to capture an
entire object or scene geometrically with 100 micron piieaisising a laser scanner, it would be
both difficult to perform the scan, as well inefficient to rendhe resulting model. Instead, using
image data for smaller scale details can be a more effectigentiacquisition time, memory, and
rendering time. Image data could be not only in the form ofdgexture-mapped images, but also
various other image-based representations, such as theei@rized textures that we will describe
in Chapter 4.

Pure image-based rendering methods take this even furijgesting that entire scenes or ob-
jects can be represented solely by image data, but thisre=quéry many images in the same way
that pure geometric models require so many polygons. Gleaddeling absolutely everything with
polygons is not particularly efficient, but it is also proflatic to model scenes entirely with images;
it seems that some mix of geometric and image-based modeilsilwe most efficient.

There are three scales that are often discussed separataynputer graphics, as they can be
most efficiently rendered in different ways: Macro, Mesod &ficro. This is similar to how, in
physics, problems of a certain scale, like the trajectorg bhseball, can be solved with a simple
formula (a mathematical model), but when the same problestased up to the trajectory of a
planet, a more complex model is required. We will illustrateh scale, by referring to how one
would model a brick wall.

Themacroscale is the largest scale, and corresponds to the oveaglestf the object, such as

a single rectangle for our brick wall. This scale is mostftepresented with polygons, as it will



continue to be in this thesis. Other possible structuresiaero scale modeling are parametric and
implicit curved surfaces [18].

In the middle, we have theesascale. At this scale, we model the details like the indeoitesti
between bricks, imperfections and cracks in each brickétis scale is not strictly defined: the size
of so called details could vary significantly depending o &pplication. Most current rendering
engines mainly use bump mapping to render details of thik sediich approximates the effect
of small bumps using only shading [2]. Some more advancdthtques, which will no doubt be
used in future engines, include self shadowing bump mappil parallax mapping [55], and
displacement mapping [9].

The micro scale is the smallest scale, and represents how light oitevath the surface at a
microscopic level. This means, given an input light direaticolor and intensity, what light color
and intensity is emitted toward the camera. This is a functialled the Bidirectional Reflectance
Distribution Function (BRDF). Methods for simulating tidemplex physical process vary widely.
The simplest, and thus most common, real time methods use garameterized lighting equations
such as Phong or Lambertian [48]. Although efficient, thegpgéons are approximate, and it can be
difficult or impossible to tune the parameters and achievesired result. It is possible to compute
an approximate BRDF from a set of images, but it is quite difficsince this is a function of five
dimensions: incoming and outgoing light direction, eaclwbich have two degrees of freedom,
and light wavelength (which is generally ignored). AcqdiBRDF representations may be either
approximate, or inefficient to store and render, so the useicti models has remained primarily a
research area, and has not yet made it's way into commeysitess.

In this thesis, we will present a tiered model which is destyoonsidering both model acquisi-
tion from images and efficient real-time rendering. Oureystepresents each of the macro, meso,
and micro using different data structures, each of whichtmaacquired reasonably from images or
other sources. The method balances well the efficient userofiercial rendering hardware with
the ease of automated model construction.

We represent the macro scale using a triangular mesh. Twoaegare described in Chapter 3
that we have used for acquiring low resolution meshes froagies. Structure from motion (SFM)
uses feature correspondences over a sequence of videcsftaragtract scene geometry with no
camera calibration required. Shape from silhouette (SE®) Yery robust algorithm which uses
an object’s silhouette in multiple views combined with badition information for each view to
compute thevisual hull an approximation to the object’s shape.

Meso scale structure is represented in one of two ways. Ifistisystem, we use a texture pa-



rameterized by viewing directiofdynamic Textureare used to store and render the parameterized
texture efficiently as shown in Chapter 4. Although this mettvorks well for very small geometric
details, it becomes less efficient with more reasonable pesles, and large ranges of viewing an-
gle. The second system stores geometric details in a desplaat map: a texture image where each
element encodes the distance from the macro scale appriiimta the true object along the sur-
face normal at that point. The displacement mapped surfaeesendered using a novel algorithm
for per-pixel hardware accelerated displacement mapphrghnis described in Chapter 5.

Finally, the micro scale or surface reflectance model isesgmted usingpynamic Textures
Here, we parameterize a texture in terms of lighting coadgi This type of texture variation can
be represented very efficiently by modulating a basis of isayVe sample large range of lighting
conditions, but compress the information down into a snealitre basis. In Chapter 4, the technique

is discussed in detail.

Macro Meso Micro

Approximate Triangle Mesh Displacement Map Dynamic Texture Basis

Renderings with different views and lighting

Figure 1.1: Overview of how the Macro, Meso, and Micro scales represented, and resulting
renderings

Two systems were developed. One using a 2 tiered system basepolygonal mesh combined
with dynamic textures. The other has three tiers, combiaipglygonal mesh with displacement
mapping and dynamic textures. These systems are presen@thpter 6. In addition, each tech-

nigue has also been evaluated individually with experimshbwn in their respective chapters.
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Thesis Contributions

Parts of this thesis were published in seven papers andntatiems in SIGGRAPH [58], Euro-
Graphics [56, 27, 7], IEEE Virtual Reality [4, 8], and the IEEternational Conference on Robotics
and Automation (ICRA) [57].

e Several hardware accelerated dynamic texture renderjogitdms were developed and im-

plemented on various examples of consumer graphics haed{&ection 4.5).

e Techniques for the acquisition and storage of dynamic testwere developed. (Chapter 4

and Section 6.1).

e An easy-to-use system was built for acquiring dynamic texdunodels from only 2D images

(Section 6.1).

e A plug-in was built for AliasWavefront’s Maya 3D modeling geage. This allows users to
render and animate our dynamic textured models alongsideeational models. (Section

4.6)

¢ A novel displacement mapping algorithm was designed forenodraphics accelerators and

implemented in hardware as a fragment program (Chapter 5).

¢ A hierarchical graphical model was designed as the combimaf geometry, displacement

mapping, and dynamic texture. (Chapter 1)

e A system was built to acquire hierarchical models of objaats efficiently render them (Sec-

tion 6.2).



Chapter 2

Review: Graphics Modeling



In computer graphics, mathematical models of the world egeiired in order to generate syn-
thetic images of it. Traditionally, scenes have been repriesl by a variety of geometric primitives
such as polygons or curved surface patches. Building thesmetric models manually can be time
consuming, even for experienced artists. More recentliyding geometric models automatically
from images, or even working with models defined by imaget) nd explicit associated geometry
has become a popular area of research known as image-badetingand rendering (IBMR). Al-
though commercial graphics software is still largely fami®n geometric models, different forms
of image data, such as texture maps, has been slowly makingait into the traditional graphics
pipeline.

In this chapter, we very briefly describe conventional mdthased for modeling graphics
scenes. Although we attempt to provide some context in tea af computer graphics model-
ing, we do not go into extreme detail. For a more completeagerof image-based and geometric

models, respectively, see [18] and [5].

2.1 Conventional Models

Traditional graphics models represent the world as somef ggtometric constructs. The geometry
is rendered by simulating or approximating the physicakpsses that occur when a real photo

taken.

2.1.1 Polygonal Models

The most commonly used geometric model is the polygonal m&stiaces are represented by a set
of connected polygons. 3D graphics accelerators and eyt software generally focus on effi-
ciently rendering triangles, so any higher order polygorns imodel are usually triangulated before
rendering. For the same reason, curved surfaces are oftgrieshdiscretely and also rendered as
triangular meshes.

Polygonal meshes are often used as piecewise planar ap@tons to smooth surfaces. For
lighting purposes, it is assumed that the normal to the turfase is computed by interpolation
(either spherical or linear) of the surface normals at pofygertexes. Vertex normals can be de-
rived from the function defining a curved surface, but if sacfunction is unavailable, they are

approximated by a weighted average of all polygons contgitiiat vertex.



2.1.2 Curved Surface Models

Curved surfaces can be represented as implicit or paranfietictions.

Implicit surfaces are of the forifi(x, y, z) = 0. Itis simple to represent a sphere, torus, cylinder,
or other geometric primitives in this way. More complex sea@are usually generated by CSG
(Constructive Solid Geometry) operations between pnmgisuch as union, intersection, etc. CSG
operations are simple to implement with implicit surfaced®ls, making them popular with some
modeling software. However, rendering these surfaces isosimple. With ray-tracing, it is
possible to simply intersect rays directly with an implgitrface by solving a system of equations,
but it is not necessatrily efficient. Hardware acceleratoly cender triangles, so implicit surfaces
must be converted to triangular meshes before renderinghveian be costly.

Parametric surfaces are formulatedagy, z] = P(p, ¢), wherep, ¢e[0, 1] parameterize its sur-
face. This formulation is popular because of convenienaaadeling, as well as simplified ren-
dering. Commonly used parametric curves are mostly cubi;pmials: bezier, hermite, NURBS,
etc. Parametric surfaces form patches which are used t&mgttbuild an object, similar to how
polygons are used in polygonal models. It is much easier twexd parametric curved surfaces
into triangular meshes, making them more useful for reaktuse. Most recent graphics hardware

actually supports tessellation of some kinds of paramstritaces.

2.1.3 Lighting

In model-based graphics, lighting is usually performediml@ating a parameterized lighting equa-

tion, either at each vertex or each rendered pixel and mtdglthat result with the surface color.
Ambient Ambient lighting is simply a constant amount of light, usedpproximate global illumi-

nation effects.

L=a (2.1)

Here, a is the amount of ambient light.

Diffuse The diffuse or Lambertian lighting equation simulates tigh from rough surface. In this

model, light incident to the surface is emitted equally ird&ections.

L=a+d(n-1) (2.2)



Here,a is the amount of ambient light, is the amount of diffuse light,is the light direction, and

is the surface normal.

Specular Shiny surfaces can be simulated by having some amount dfrifllect specularly (like a

mirror). The Phong lighting equation is an example of suchodeh

r=2mn-n-1 (2.3)
L=a+d(n-1)+s(r-v)" (2.4)

Here,a is the amount of ambient light, is the amount of diffuse light, is the light directionn is
the surface normal, v is the view direction, s is the amoursipefcularity, r is the reflection vector,

and n controls the size and intensity of specular highlights

2.2 Image-Based Models

IBMR (image-based modeling and rendering) research seeisnplify the modeling process, at
least for scenes and objects that exist in the real world¢chvirie may simply want to capture for
re-rendering. There are two categories of IBMR algorithmsthods which simply use images to
generate a conventional 3D model that is then rendered teittdard methods, and methods which
acquire some other sort of model which requires speciatinelé for rendering.

Many algorithms exist for modeling conventional geometoni images. Stereo or multi-view
stereo imaging computes depth images by finding image poimespondences in two or more
images from calibrated cameras [47]. Shape from shadinghotbmetric stereo solves for a depth
image using one or multiple lightings of a scene [59]. Shapmffocus acquires depth information
using multiple images from the same view with different ficgttings [43]. Structure from motion
(SFM), like stereo, uses multiple image point correspondeio build 3D models. However, many
image frames from a moving camera are used, and cameraatiibis not required. A basic SFM
method is shown in Section 3.1.

Shape from silhouette (SFS) uses the occluding contour obgtt in multiple images to con-
struct a volume approximating that object: thisual hull We will discuss SFS in more detail
in Section 3.2. Photo-consistency methods, use multipbgas and the property that a particular
point on an object should be the same color when viewed frond&action. With this property the

photo-hullof the object can be “carved” from a volumetric structure][29



Although the research in modeling from images is extensnast methods are neither compu-
tationally efficient, nor particularly robust. This is paiftthe motivation behind pure image-based
rendering, where the intermediate geometric model is aliteid, and novel images are generated
more directly from sample images.

Most image-based models can be thought of as storing a latgbake of light rays which are
acquired from some set of sample images. New images can leeaged by finding a ray in the
database that corresponds to each pixel in the desired inTdge set of all rays through a scene
with a given origin and direction is called the plenoptic étion [41]. Pure image-based methods
usually take samples of the plenoptic function for a scermbg@ct using many images, where each
image pixel samples a single ray. Models differ in the way tha large amount of data is organized
and how the function is approximated between samples. Bagthods of this type include lumi-
graph [20] and light-fields [31], which have led to many diéfiet varieties. Rendering new views
using this type of model can require relatively little cortagion, but the memory requirements for
approximating the 5D plenoptic function are very large. &duce this effect achieving equivalent

photo-realism, image-based data is often combined withcqipate geometric models.

2.3 Hybrid Models

In real systems, pure geometric models are rarely usedisiwoeld be difficult, or near impossible,
to model small scale details such as surface texture usiggqus. However, due to their incredible
storage and acquisition requirements, pure Image-Baseftlglare not very practical either. Some
combination is usually used, giving rise to hybrid methods.

Although most conventional modeling and rendering sofenargeometry-based, texture map-
ping is always supported. Texture mapping is where imagesiamply pasted onto geometric mod-
els. This allows small and sometimes repetitive detailsdadpresented much more efficiently
than with polygons. Texture maps can be thought of as sta@pegially varying albedo (or dif-
fuse reflectance color). Texture mapping has been extendedy other parameters in the lighting
equation, such as surface normal (as in bump maps), spigusaiglow.

On the opposite side of the spectrum, some image-basedriegddgorithms are based on
reprojection of images with depth. This means that at eaxbl pie know the depth of that part
of the scene along the camera’s viewing direction, and theigkwow some geometric information

about the scene.
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More in the middle lies view-dependent texturing, wherdedént textures are applied to a sur-
face depending on the viewing direction. This reduces thaalieffect of slight inaccuracies in
the geometric model [12]. The bidirectional texture fuant{BTF) takes this one step further by
sampling textures for variation in both the viewing direatiand the lighting direction. This takes
quite a bit of memory and acquisition time, but allows a neaHd texture to be captured and ap-
plied to an arbitrary geometric model [11]. In Chapter 4 weallilbe our own approach to this type
of parameterized texture rendering and we detail the stoaad rendering optimizations that were

made.

2.4 GraphicsHardware

The need for specialized graphics hardware grew primatityobthe complexity of a few particu-
larly computationally expensive problems such as pergmecbrrect texture-mapping, and visible
surface determination. Early graphics chips, such as tHr $@bdoo, solved only these problems
related to the rasterization of triangles. These includute-mapping, color interpolation, alpha
blending, and depth buffering.

In the second generation of graphics processors (now dalkidk) vertex transformations, light-
ing and triangle clipping were performed in hardware. Inttfied generation, programmability was
added to the pipelineMertex programswhich allow precise control of how vertexes are trans-
formed, andragment programsvhich compute the color of each pixel were added. The mostitec
iterations of the GPU have seen primarily an increase in tireptexity of fragment and vertex
programs.

The GPU is an incredibly parallel architecture. Since battiexes and pixels are not allowed to
rely on any particular ordering of computation, many veggeand pixels can be processed at once.
For example, the NVidia GeForce 7800GTX can process 24pawi 8 vertexes simultaneously.

A slightly simplified flow chart of the hardware graphics dipe is shown in Figure 2.1. The
following is a brief description of that hardware model. Banore detailed examination of graphics
hardware see [1].

Vertex data including position, and optionally other &tiites such as texture coordinates and
color, is stored in a vertex buffer. A second buffer callediraadex buffer stores indexes into the
vertex buffer indicating which vertexes are connected tmftriangles.

The GPU reads vertexes from the vertex buffer and passestthawertex programThe vertex

program usually transforms each vertex from its local dlijeordinate system into the global world
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Vertex
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Program

Primitive Assembly
& Rasterization

Index Buffer

Application

Fragment
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Depth Test

> Blending

Texture Data

Depth Buffer

Frame Buffer

Figure 2.1: Simplified view of the graphics pipeline. Pragraable components are shaded in gray

coordinate system, and then projects the vertex onto theavitamera. However, the vertex program
is written by the user, and can perform any operation desifée vertex position in camera space
must be output from the vertex program; a number of additidbBaattribute vectors can be output
which will be interpolated between triangle vertexes dgiriasterization.

Vertexes output from the vertex program are then assembiedriangles which are clipped to
the screen and rasterized. The rasterizer finds each psidkia triangle, computes interpolated at-
tributes for that pixel, and passes them as parameteragment programThe fragment program
computes a color - and optionally depth - for each pixel.

The depth of the current pixel is compared against the ctivane in the depth buffer to see if
it is visible. If the depth test fails, the pixel is not renddr If it passes, the depth is written to the
frame buffer, and the color is sent on to blending. The blegdiage reads the color at the current
pixel location from the framebuffer, combines it with thendered color, and writes it back to the
framebuffer. Usually the 4th component of the color veatatled the alpha, is used as an opacity

to render translucent surfaces, but other blending funstéwe available.
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Chapter 3

Review: Building Geometric Models
from Images
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With the rapidly decreasing prices, and increasing qualitgonsumer grade digital imaging
devices, geometric modeling from images has become a vevg aesearch area. Suddenly, a large
number of consumers own digital still cameras, video camenad web-cams making applications
of passive vision technology reasonable consumer prod@ptsications such as personal captured
custom character models in games, automatic modeling afetmid objects for use in home design
software and many others would be commercially viable if/tivere robust and easy to use. Now
that the required hardware is affordable, research into taomccomplish these tasks on available
hardware has suddenly become very interesting.

Here, we describe two algorithms for acquiring geometniacttire from images, and show
results from each method. Structure from motion (SFM) useesponding feature points in a video
sequence to compute geometric information, while shapa &ithouette (SFS) uses the silhouette
of an object in several views to approximate its shape. Soodeis acquired using each algorithm
will be shown, and the two methods will be compared and cstech

The geometric models acquired by these methods will be uséedirst level of detail in our
hierarchical model, representing the macro scale featufeowing chapters will describe how

micro and meso scale information is represented and retidere

3.1 Structurefrom Motion

Structure from motion (SFM) is a method for acquiring geamenformation from a sequence of
images. SFM is similar to stereo methods, but uses multipkges from a single camera rather
than simultaneous images from multiple cameras. The maiarddge of SFM methods is that they
require little or no camera calibration, which can be tediod disadvantage of this method is that,
due to the difficult task of feature correlation or trackititg result is a quite sparse geometry. Since
we only use this as the lowest detail level in our hierardhivadel, this is not much of a problem
in our case.

Uncalibrated SFM solves for both camera calibration andrgetc structure in one step. Such a
problemis very difficult using an accurate model of the imagsrocess, but with some approximate
camera models, the solution is simple.

The simplest camera models are parallel projection modais.type of camera does not model
the convergence of rays to a focal point in a true perspectiveera and is therefore only reason-
able in certain situations. In particular, parallel preoi@e models are appropriate for long telephoto

lenses or when the object of interest is always near the alegntis, which is true in our experi-
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ments. Although it is possible to perform SFM using more aatauperspective projection models,
the parallel projection model is used here for simplicit¢,[25]. We will describe in detail the
implementation of SFM using therthographiccamera model [51]. In this type of camera, after
rotation and translation into the camera’s coordinatessgst 3D point is projected onto the camera
by simply removing it's Z coordinate.

First, we must choose a set of feature points on our objectaeswhich are all visible in every
sample image. Then we need to find the 2D positions in eacheémagre these features project.
This can be done in various ways; we have used visual trackihging the XVision2 tracking
libraries, we track several manually selected featuretpamreal time during image acquisition
[30].

We compute the average feature position in each image amidstib from all the feature points
in that image so that translations can be ignored. After kéngptranslation, a single point can be
projected onto imagéeby multiplying by a 2x3 matrixP; which is simply a 3D rotation matrix with

the third row removed.

P11 P2 Piags

X 3.1
Pio1 P22 Pias J (3-1)

Tij =

A set ofm points can be projected onto imageith a single matrix multiplication:

[@in @iz 0 2im | =P X1 Xo - X, | (3.2)

Finally, all m points inn images can also be projected using a single matrix mulépba:

Ti1 T2 o Tim b
T2,1 T22 t Tom P . . .
= : [ X1 Xo - Xy ] (33)
Tn,l Tn2 " Tnm Pn
r=PX (3.4)

Note that theX; are 3x1 vectors, the; ; are 2x1 vectors and th are 3x2 projection matrices.
So, ther matrix contains our known feature positions in each imatgr a#moving translations.
The rest of the equation is unknown. In order to compute thesBDctureX and the camera
orientationsP, = must be factored. Using SVD, we decompasito USV ™. Ideally, using an
actual orthographic camerawould be rank 3 and thus have only 3 non-zero singular valDas.

to noise and the approximate camera model, this may not beabe but we still expect the 3
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largest eigenvalue-eigenvector pairs to capture the gemnseructure. So we drop all but the first 3
columns ofU/ S and all but the first 3 rows df 7. ThenX = V7, andP = US.

This first step is simple, but we are not finished. As statetieeaeachp; is 2 rows of a 3x3
rotation matrix, meaning that those two rows should be artinmal. The solution found with SVD
is an affinestructure, with no constraints on thié matrix. However, we can enforce Euclidean
constraints by using the SVD solution as a starting poinafoon-linear optimization algorithm.

First we must convert each matri% into a 3x3 matrix?, by computing the third row as the
cross product of the first two. Then we solve for a sirgj#t8 matrix @@ which, when multiplied by
any P;, results in an orthonormal matri®, = P;Q. Then theX matrix is multiplied by the inverse
of @, X = Q'X, sothatP, X = P,QQ~'X for all i. To compute Q, we use a non-linear solver
with an error metric which should be zero when®jlare orthonormal.

This algorithm gives us a set of Euclidean 3D points. To forpolggonal model, we have often
simply performed a delaunay triangulation on the averagg@pted positions of all points. If the
results are not exactly as desired, the user can manuallifyibd triangulation. Since the number

of polygons on this type of model is typically very low, thgsriot usually a difficult task.

3.1.1 Results

Figure 3.1: A few sample inputs to the SFM algorithm with ked feature positions

Here is an example of structure captured using this teclenigigure 3.1 shows three of many
inputimages with the tracked features marked. A renderffitlg®house after capturing its geometry
using SFM is shown in Figure 3.2 along with the triangulatidnich was generated manually to
make a 3D surface out of the set of points.

Texture patches are tracked in video to identify corresponds using XVision2, a tracking
library for C++ [30]. These patches must be sufficiently te@tl and locally unique in order to track
robustly. These types of patches are difficult to identifjoaatically, and sparse on most objects.
For this reason, we have users manually select points akstteThis results in sparse models, but

where features lie on important points on the model, suchasdrners of the house in Figure 3.1.
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Figure 3.2: SFM results triangulated geometric structuet @ rendering (rendering uses view de-
pendent dynamic texture)

3.2 Shapefrom Silhouette

The silhouette of an objest, is the set of points where the object projects onto an imagyeedirom
a particular view. A single silhouette contains a large amtad information about the shape of the
object. Givens,, and camera parametarsve know that the object is inside the volume that the
silhouette con&, defined by all rays from the camera center passing througtoaits ins,. Since
this holds for all views, given a set of views, we can constrain the object’s volume further, to the
intersection of all silhouette conef), ., S,. The limit of this volume as the number of distinct
views |V| — oo is known as thevisual hull of the object, provided that no views i are are
centered inside the convex hull of the object. From a finiteber of views, the volume acquired is
called the approximate visual hull, but we will simply referit as the visual hull.

The process of computing the visual hull from a set of imagésown as shape from silhouette
(SFS). Intersection of arbitrary shapes can be very expenbut by taking advantage of some
key features of silhouette volumes, and the intended agic, the visual hull can be computed

efficiently, in some cases in real time. In the following, assify methods by image-based (2D to

2D), model-based (2D to 3D) and by data structure.

3.2.1 Silhouette Extraction

To extract shape information from silhouettes, the sillitmsemust first be extracted from images.
This is the problem of segmenting an object from the backggourwo methods are commonly
used: background subtraction and blue-screening.

We use the following statistical color segmentation meth®tie user selects some region(s)

in some example image(s) to identify a set of pixels in thédsoblored background. Principle
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components analysis is applied to the selected RGB pixigisiggus a space that is well aligned to
the statistical properties of the selected backgroundsixe

We build a matrixC' where every row is formed by subtracting the mean color valérem
a pixel in the selected set. Then we find the eigenvedi®fsand eigenvalue matrixc of the
covariance matrixC7'C. We then useEg)\gl as our new color space. To perform the segmenta-
tion, we apply a threshold to each pixel's norm after being transformed into the newacspace.

Background pixels satisfy equation 3.5.

|EENG (c—o)| <7 (3.5)

Normally, a small number of pixels are misclassified. SFS&iy vobust to pixels falsely marked
as foreground by color segmentation. Pixels incorrectheled as background would cut holes

through our results, but other noise is simply removed thosiétte volumes from different views.

3.2.2 Intersection Algorithms

There are three classes of algorithms used in SFS: volunmagthods, polyhedral methods, and
image-based methods. Volumetric methods use some kindsofatized volume representation,
such as a voxel grid, and perform intersections discretdlyat space. Polyhedral methods perform
exact intersections of multiple polyhedral meshes. Imagged methods only compute new views

of the visual hull given input silhouettes.
Polyhedral Methods

The best possible model of the visual hull that we can comfyata a set of images is the exact
polyhedral visual hull. This could be computed naively bgniing polyhedra from each silhouette
and intersecting them all in 3D using a general CSG algorititowever, due to the projective
nature of the silhouette volumes, much more efficient algors exist. Matusik et al. [39] has
recently proposed a very efficient algorithm which will bésly described here.

First, each silhouette image is converted into a set of kgeEr®ents separating the object from the
background. These edges form a set of polygons with podsddés, that represent the occluding
contour. The resolution of the edges is chosen based ontaoeyao that regions of higher curvature
in the contour are represented with more edges than regiolesver curvature. The number of
polygons in the resulting model can be adjusted by contigpithe number of edges in the input

silhouettes, as well as the number of input silhouettes.
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Each edge generates a 3D polygon of a silhouette cone whebdck-projected with its cor-
responding camera parameters. It is important to note tieay esuch polygon will generate one or
more polygons in the output model. Each polygon is projeot#td each image plane, intersected
with the silhouette polygon for that image (in 2D). Both pgdyis are possibly non-convex with
holes. The resulting 2D polygon intersection is projectadkonto the plane in 3D.

The resulting set of polygons are the polyhedral visual lizdich polygon in the resulting model

has its own copies of all vertices, so, in a final step, duf@izartices are removed.

Figure 3.3: Polyhedral Visual Hull: the bounding polygomshe volume are calculated

Although this algorithm is very efficient compared to theveaimplementation, when using
large numbers of images, as our we have in most of our expetingerformance would be much
slower than volumetric methods. Because of this, in additiothe implementation complexity of

exact polyhedral algorithms, we have favored volumetrithods.
Volumetric Methods

The easiest way to intersect volumes efficiently is by quaitittn of the 3D space. By representing
the space as a finite number of basic elements, it becomes éasinumerate which portions of
the space are inside or outside the object. The obvious dmensthat with quantization comes
aliasing. If any of the details of the object are smaller tttansize of a single volume unit, they
will be lost. However, quantization is also a means for aitjgsthe speed vs. quality trade-off by
changing the quantizing resolution.

This method was first used for SFS by Martin et al. [37] in 19B8ey represented the volume
as a grid of parallel rays with points of volume entry/exitaeded for each ray. It was implemented
with an orthographic camera model, but easily extends tegaetive.

The simplest way to quantize a volume is to split it into a 3l @f equal-sized cubes, called
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voxelsor volume elements. This is the simple 3D extension of theiweges are stored as an array
of pixels. We have used a more processing and memory effigietitod for quantization called
marching intersections [46].

Developed recently by Tarini et al. [46], the marching istattions data structure (MI) was
initially used for performing boolean operations, fixingas, and adjusting polygon count in poly-
hedral models. It was shown to also be particularly effic&ntcture for use in SFS [42].

The MI data structure consists of three sets of rays, eadllplaio one of the three axes (X Y
or Z). For each set, there is an NxN grid of rays, so they comtmiriorm an NxNxN cube. Each ray
stores all points along its path where the object being sspried is entered or exited. This repre-
sentation contains all the information of a voxel grid, plustores exact surface intersection points
along each ray, yet uses orly( N2) storage (since each ray only passes through the object & smal
number of times). The reason for the name marching intéosecis that this data structure stores
the exact information necessary to render the surface gyapigh marching cubes (no interpolation
necessary) [35].

Boolean operations (such as intersection) on the using theak4 structure are reduced to 1D
operations between rays. So in order to perform silhouetéesections, each silhouette cone can be
converted to MI, and then all the MI cones can be intersecidderch other easily by performing
intersections on all the rays. In practice, a single M| dtrces can be updated iteratively to save
memory.

Efficient intersections of a Ml structure with a silhouettme are performed as follows. Each
ray is projected onto the image. The rays are “drawn” usieggtesenham line algorithm [3], and
points where the line crosses from a background pixel tdagétte pixel, or from a silhouette pixel
to a background pixel are noted. Each of these intersectianigis then back-projected to form a
ray, which is intersected with the current ray being proedsand the intersection point is stored on
that ray in the Ml data structure.

Further performance increases are achieved by noting thahwsing a high resolution Ml
data structure (say 512x512x512), many of the parallel pagfect to the exact same 2D line in the
image. Therefore, the 2D intersection points of that linhe image don’t need to be recalculated
(intersection of the back-projected ray with the 3D ray dtiles need recalculation). In [42] a cache
is used to store this data, and the resulting improvemeng¢ifopnance is significant, making the
method scale much better to higher resolutions than otlgerighms.

One of the problems with this method is that the M| data stmectan easily become in conflict

with itself. Errors are the result of floating point erroradiasing problems as a result of intersecting
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Figure 3.4: Visual hull with marching intersections: rayersections of a grid pattern with the
volume are stored

lines with the 2D silhouette image. The problem is that one@beays may indicate that a point is
inside the volume, while another ray set says that point iside the object. This is not a problem
to identify, but removing such inconsistencies is nonidtiwVhen rendering a structure with errors,
the marching cubes algorithm may get to a cube which intes$lee surface and should be rendered
but all the intersection points are not available. In thissgainavailable points must be interpolated
from available data.

This method was used in combination with dynamic texturordgltie system described in Section

6.1.2. Figure 3.5 shows an example of a model captured wigtathorithm.
Image Based M ethods

For real time applications, it is often the case that you wdikk to capture a model, and then display
it from an arbitrary view-point immediately (possibly afteansmission over a network). For these
applications, as you can imagine, the 3D model can only beedd€rom one view-point at a time.
So every time the 3d model is computed, it is only used once.idé&a with image-based methods
is to generate particular view of the model, without the &step of creating a 3D representation.

Matusik et al. [38] was the first to develop an image-based. SR8 method is exact to the
resolution of outputimage. Each pixel is traced back alorayaand if that ray intersects the visual
hull then the pixel is rendered.

The HAVH (hardware accelerated visual hulls) algorithmeleped by Li et al. [33] makes
use of consumer graphics hardware to render arbitrary vidwise polyhedral visual hull directly
from the input silhouettes. Originally, the number of refece images was limited by the number
of texture units available on the hardware, but with incia@rogrammability, this is no longer

a constraint since many images could be placed in one texdnceunlimited texture accesses are
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available in shader model 3.0.

From each silhouette image a 3D cone is generated as a pobyhevery polygon on every
silhouette cone is then rendered. The trick is that all thesette images are applied to all the cones
with projective texture mapping (using the projection rxafrom their corresponding cameras).
These textures have alpha=1 inside the object and alphatsitleuand are used as a mask that
eliminates the portions of each cone that do not lie on thfaserof the visual hull. All polygons
are still rendered entirely, but only the correct parts @nthactually generate pixels in the image.

Some results using this algorithm are shown in Figure 3.6.

3.2.3 Results

Figure 3.5: An elephant captured using SFS with a statiocanyera and turntable. A few of the
input images are shown on top, and the reconstructed elefhstrown on the bottom.

= !n

Figure 3.6: Results using the HAVH on algorithm on a hand witee cameras

Here we show a couple of examples of some objects capturadsivitpe from silhouette. Fig-
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ure 3.5 shows an elephant which was captured on a turntakler& images were taken from a
stationary camera as the object was rotated on a turntabéeg@ometry shown was captured using
the marching intersections SFS algorithm.

In Figure 3.6 we see a visual hull reconstruction using farefemages. Only three cameras are
being used here. However, in this case, the visual hull isgoednstructed and rendered on the same

machine in real-time using the HAVH algorithm.

3.3 Discussion and Comparison

Although both SFS and SFM have been used in this researchavesfévored the silhouette-based
approach. For a small object capture system, SFS is much mbust and simpler from a user’s
perspective. Minimal to no user input is required for a tahi system.

In our SFM system, the user must identify the points to bekedcthen carefully move the
object or camera around on a tripod, then check the automn@ingulation and potentially change
it. All that work and you can still only capture a small vaiettin viewing angle before some of the
tracked points are lost. With the SFS system, the user siidphtifies the background color, and
the approximate location of the object in two images, andllardtation around the object can be
captured. In addition, SFS results in a much more accurateetailed model.

The SFS system, however, can never be expected to captueee, fike the interior of a room
for example, which is possible with SFM. And SFS requires eancalibration in the form of a
calibration pattern in each image. Each technique has iteflie, but for a small object capture
system, with potentially unskilled users in mind, we haverfd SFS to be much more successful.

For the SFS intersection algorithm, we have used the magéhiarsections method in the sys-
tem in Section 6.1.2. This algorithm was chosen for the Yailhg reasons: it is nearly as easy to
implement and efficient as a voxel-based method; it usesiessory O(n?) vs O(n?)); resulting

structure is more accurate due to the exact intersections.
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Chapter 4

Dynamic Texture
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4.1 PreviousWork

Conventional graphics represents micro scale detail ysamgmeterized lighting equations which
attempt to simulate the surface’s reflectance properties.Phong lighting equation shown in Equa-
tion 2.4 is a classic example. More generally, the functieimy approximated by such models is
called the bidirectional reflectance distribution funoti®RDF). The BRDF gives the proportion

of light transfered in the direction of the camera, givendirection from the light. For a real ob-

ject, the reflectance properties often vary continuousbr akie surface. The bidirectional texture
function (BTF) [11] is texture parameterized by viewing digthting direction, which represents a
spatially varying BRDF as well as parallax, self-occlusiand self shadowing effects.

The BTF can be represented by just storing a large databamsagés. Our method, thdynamic
texture is a method for representing and rendering parametereedre maps, such as the BTF,
more efficiently [7]. Related work includes polynomial tese¢ maps, which compress parameterized
textures by storing only the coefficients of a biquadratilypomial at each pixel in the texture [36].
Several other methods, including ours, use a linear baseptesent texture variation.

Freeman et al. showed that an image basis can be used to ttregierceived effect of motion
[19]. Jagersand showed how a basis can be used to represimsras complicated as articulated
agents (directly in the image plane with no geometry) [23, Z&rtain types of animated textures
such as water waves and fire were rendered using a basis andtediin eigenspace by Soatto et
al. [50, 14]. These animated textures were also called digxtures, but not to be confused with
our method by the same name.

The eigentexture method uses an image basis to represhtihdigon a precise 3D model.
Tensor-textures use a multilinear basis [52] to store tHe3fliF, with both view and lighting varia-
tion. Tensor-textures are interesting because they sepihwalighting and view variation in a way
that we can use a small number of basis elements for lightinigtion, and a large number for view
variation, resulting in better compression for the samdityu&lowever, to capture a tensor texture,
a full set of matching lighting conditions is required foreey view. This is difficult to achieve with
a real system, and so their implementation uses only comgeateerated inputs.

Our methoddynamic texturescan represent both view and lighting variation includiigiting,
self-shadowing, parallax, and self occlusion with a siriglear basis. Where other methods often
use planar material samples or acquire the basis in image sp@ acquire our dynamic textures
directly from real objects using approximate geometric eieds shown in Sections 6.1.1 and 6.1.2

[6, 7]. In addition, our method, achieves additional comspien by using the YUV color space as
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described in Section 4.3. Other methods either ignore celorking in grayscale, or use the less

optimal RGB color space.

4.2 Theory

A simple method for implementing any type of parameterizedure mapping is to store a large
number of textures, by observations made with differenwkmparameters, and when rendering
just pick the observed texture with the nearest parameteslightly more intelligent method is
to blend linearly between a few observed images with sinfilrameters (images observed from
similar viewpoints in the case of view-dependent textures)

With dynamic texturing, instead of simply storing texturmeigh various known parameters and
interpolating them, we compute a linear basis from all ob=gitextures, and blend this basis using
interpolated coefficient vectors to generate new textubepending on the texture, the derived basis
may have far fewer elements than there are observed textigieg much less memory, while still
spanning the same texture variation.

To motivate the derivation, consider interpolated viewetggent texturing as it is described in
[12]. When rendering a new view with parameters identicalre of the original sample views;,,
the texture derived from imagk,, T, = w(Iy), is used to texture the model, whereis a warp
function defined by a 3D triangular mesh with texture cooatis.

At all other viewing positions, some linear blending of ne&ws is used, with a vector of
weightsz based on their similarity to the current view. This can beregped mathematically by a

matrix multiplication, where the columns @f contain the sample views = [I1, I, ..., I,,].
t=Tzx (4.1)

The major variability iril" is due to geometric parallax error and illumination diffeces. Through
an analytical derivation, a first order linear basis can hmfbto represent these types of variability
[49, 21, 7]. This means that for large image sets, we can firghabasisB with far fewer columns
thanT, such thafl’ ~ T = BY. Textures are then generatedtas BY z, and the number of basis
images, and overall memory consumption is reduced.

While B could be be computed analytically, given exact geometrimkedge of the scene, cam-
era and lighting, this is seldom feasible in image-basedaguhes. Instead we use the knowledge
that there exists a subspace spanfiirtg obtain the best (in the least square seiis#)rough Prin-

ciple components analysis. We calculafeas the eigenvectors @t T'. A dimensionality reduction
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is achieved by using only the firateigenvectord/; ... Thus, our texture basis 8 = T'M;,, and
our coefficients ar¢” = M{ .

To estimate the coefficients for intermediate poses, wepntate between the coefficients of
sampled poses. For efficient implementation, cubic intettpm is applied during preprocessing,
and results are stored in a set of 2D look-up tables (one foin basis image) which map view
direction to blending coefficient. Entries in the blendiafgles are then bilinearly interpolated during
rendering.

The benefits of using the dynamic texture basis rather thardatd view-dependent texturing,
is that significantly less storage is required. The dowm-@dhat every element of the texture basis
will have an effect on the result at any view, instead of ohlymearest few. This will require a little
more work when rendering. However, in current graphics iggctures, bandwidth and memory

limitations are a greater problem than computation wheorites to image based rendering methods.

4.3 Color Space

The mathematics of this section allow for color dynamic teg$ by flattening entire images, in-
cluding color dimensions, into single column vectors. Hegrewe prefer to perform the process
separately on color channels to improve compression byidersg human perception. In gen-
eral, we are more sensitive to high frequency intensity gkarthan we are to high frequency color
changes, which is exploited by most image compressionpuwidenpression, and even analog tele-
vision broadcast standards.

We use the YUV color space, where the Y channel is intensity,l&and V are color channels.
By performing the PCA separately on the Y, U, and V channetsave free to use both different
resolutions and different numbers of basis images for ehahmel. We generally use many high
resolution basis images for Y, while using few low resolntlmasis images for U and V. This re-
sults in both additional data compression, and improvedegng performance, with little or no

difference in the resulting image quality.

4.4 Per-Pixel Rendering

When rendering a dynamic textured model with some paramétiwing direction, light direction,
etc.) we have some options as to how to set these parametersamwchoose to use the same
parameter for a whole object; we can compute individualipatars for each polygon on the model;

or, ideally, each pixel in the final rendered output will hat® parameter individually computed.

27



Figure 4.1: An example where per pixel dynamic texture reindeis necessary. The solid gray
object is the true object. The dashed quadrilateral is thpecqimate geometry that the dynamic
texture will be applied to. The light gray cameras indicampled viewing directions, the black
camera is the new desired view. Note that none of the samglesvian see the entire indentation
while the new view can.

Consider view-dependent texturing of the object as degictérigure 4.4. None of the 4 camera
views from which sample textures were taken can simultasig@ee all sides of the indentation,
yet the entire indentation is visible in the desired new vi€ilearly using one viewing-direction
parameter for the whole object, or for each individual polygvill not accurately render the new
image. Per pixel accurate rendering is required. Altholghgcenario may seem convoluted, and
appear to be solved by simply adding more cameras, notefttiat cameras are distant relative to
the size of indentations, which is generally the case, thisison will occur often.

To achieve per-pixel rendering, we first assume the sampégyés are taken from a distant
camera (this assumption is roughly valid if we use a teleplhenis at capture time). Then, when
rendering new views, at each pixel, we use the direction @frly from the virtual camera center
through the current pixel as the viewing direction paramtiehe dynamic texture at that pixel.
With no rendering speed constraints, this is simple, andMaya plug-in, discussed in Section 4.6,
easily accomplishes per pixel rendering. In order to apipiy technique in real-time, we can use
the algorithm shown in Section 4.5.3, which stores coefiidi@okup tables in textures, and indexes

them with the view direction at each pixel.
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45 Hardware Accelerated Rendering

Rendering of dynamic textures consists of blending a pi@tntarge basis of images. These oper-
ations are very well suited for implementation in graphiasthvare. Through the rapid progression

of graphics hardware during this research, several haaliwvgrlementations were developed.

45.1 Multi-passBlending

The first and simplest method is to use frame-buffer blendiflgs method is supported by even
very old graphics hardware, but requires the use of RGB @@ace, not taking advantage of the
memory benefits of YUV as described in Section 4.3.

Image blending features are intended to enable renderitrquadparent surfaces and other ef-
fects in standard model-based 3D graphics applicationsweder, most hardware is capable of
performing more general blending, including the comburatf scaled basis textures required for
our rendering. However, the rendering hardware used igdedifor textures containing positive
values only, while the spatial basisis a signed quantity. We rewrite this as a combination of two

textures with only positive components:

I(t) =B y(t) - B7y(t) + I

Here BT contains only the positive elements frah(and0 in the place of negative elements) and
B~ contains the absolute values of all negative elements fBorfthen, before drawing each basis
texture, the blending mode can be set to either scale by éicieaf and add to the frame buffer, or
scale by a coefficient and subtract from the frame bufferéddmg on the sign of the coefficient).

A new view is rendered as in the following pseudo-code:
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/1 draw the nean
Bi ndTexture();
Dr awGeonetry();

// add basis textures
for(each 19)

{
Set Bl endCoef fi ci ent (|y:(t)]);

Bi ndText ur e( B)") ;

i f(yi(t) >0) SetBl endEquati on(ADD);

el se Set Bl endEquat i on( SUBTRACT) ;

Dr awGeonetry();

Bi ndTexture(B;);

i f(yi(t) >0) SetBl endEquati on( SUBTRACT);
el se Set Bl endEquati on( ADD) ;

Dr awGeonetry();

}

45.2 Multi-passwith Programmable Hardware

As the pixel pipeline began to become programmable, &ithder Model 1.8ards, we took advan-
tage of several useful features: Textures could now bedtssigned 8 bit values, cutting memory
consumption in half; multiple textures could be combined gingle pass, increasing performance,
and reducing the chance of overflow; enough processing waitable to convert between color
spaces during rendering enabling us to take advantage of ¥l space as described in Section
4.3.

In this implementation, each RGBA texture image represknisbasis textures from a single
color channel (Y,U or V) scaled and biased to fit in the rang#&)(0In each rendering pass, as
many basis images as possible (four times the number ofadaitexture units) are multiplied by
their coefficients, the results are summed, and multipliethe row of the color conversion matrix
that applies to the current color channel. Between passease OpenGL blending to add/subtract
results with the frame buffer contents. Since signed fraafiebblending is still not supported, we
are still required to render one pass for addition and onsubtraction for all passes except the first.
Some simple effects, such as relighting, can easily be aetlim a single pass with just a handful
of basis vectors.

Three implementations of this algorithm were written: orsing the OpenGL shading lan-
guage(GLSLang), one with ARBagmentprogram 1.0, and one with NVidia’s register combiners.
The fragment program and GLSlang shaders, which run on shaaigel 2.0 and 3.0 hardware re-
spectively, also benefit from floating point computationhivitthe shader, avoiding any overflow or

underflow within each pass. The GLSLang shader is shown here:
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uni form vec4 col or mat; .
uni formvec4 coeff[gl MaxTextureUnits];
uni f orm sanpl er 2D tex[ gl _MaxTextureUni ts];
varying vec2 texcoord;
voi d main (void)

vecd tval;

fl oat col =0. 0;

for(int i=0;i<gl_MuxTextureUnits;i++)

tval =2. 0*(texture2D(tex[i],texcoord)-0.5);
col +=dot (tval , coeff[i]);

gl _FragCol or = col *col or mat;

Pseudo-code for rendering with this shader is given here:
for(each col or channel B,y)
for(i =1 to N/(4*MaxTextureUnits))
for(j = 1 to MaxTextureUnits)
Set Shader Const ant (coeff[j], yasi(t), Yasi+1(t), Yarit2(t), yasits(t));

Bi ndText ure(j , Baxi:axit3) ;

}

Set Bl endEquat i on( ADD) ;
Dr awGeonet ry();

for(j = 1 to MaxTextureUnits)

Set Shader Const ant (coeff[j], —yai(t), —yasi+1(t), —Yarit2(t), —yari+3(t));

Set Bl endEquat i on( SUBTRACT) ;
Dr awGeonetry();

4.5.3 Single Pass Rendering

Although the method in Section 4.5.2 is very efficient evempsto-date hardware, we have imple-
mented a third method which will blend even a large basis imgle pass. Although this method
is slightly slower, it is cleaner, and easier to use sincélalhding is done in one place. Overflow
and underflow are completely avoided since all blending agatns take place in floating point.
It also looks up coefficients per pixel, rather than having alpplication place them in constants,
which could be used to vary the interpolation if parameteiemaiing, lighting etc.) change per pixel.
Shader model 3.0 hardware has no limits on the number ofrexdtccesses within a shader.
However, there are limits to the number of textures that @bdund at once, and limits to the num-
ber of constants available. To implement blending withiingle pass we have tiled basis textures
and coefficient interpolation tables into six large texsurdaree for the Y,U and V bases, and three

forthe Y, U, and V interpolation tables. During rendering jiadex into the coefficient interpolation
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tables, the number of basis images, and the color matrix @dded by the application, and the
geometry is simply rendered. The GLSlang shader is showawbel

uni form mat4 col ormat ;
uni form sanpl er 2D B[ 3]
uni form sanpl er 2D L[ 3]
uni form vec3 count;

varyi ng vec2 texcoord;
varying vec?2 | utcoord;

void main (void)
vec2 tc,tc2;
vec2 lc,lc2;
int i,j;
vec4 col ={0, 0, 0, 0};
vec2 scal e;
vec4 | utval ue
vec4 basi sval ue;
for(int channel =0; channel <3; channel ++)

scal e. x=1. 0;
scal e.y=1. 0/ count[j];

t c=t excoor d*scal e;
| c=I ut coor d*scal e;
for(i=0;i<count[j];i++)
| utval ue=2*t exture2D( L[ channel],lc)-1
basi sval ue=2*t extur e2D( B[ channel , tc) -1,
col [ channel ] +=dot (| ut val ue, basi sval ue) ;
tc.y+=scal e.y;
| c. y+=scal e. x;

}
}

gl _FragCol or = col ormat *col ;
gl _FragCol or. a=1;

4.6 TheMayaPlug-in

In addition to the various hardware accelerated implentiems, a dynamic texture rendering plug-
in was implemented in software for AliasWavefront's Mayadating and rendering system. Using
this plug-in, the user can add any dynamic textured objects donventional graphics scene, and
even use the animation tools to make movies using dynamiarexk objects combined with any-
thing else Maya can render. Integrating our system into cernial rendering software makes our
research much more accessible to the mainstream compap#igs community.

This rendering plug-in was used, together with a captureesybased on shape from silhouette,
for rendering view-dependent dynamic textured artifacts virtual heritage setting. A set of carv-

ings depicting traditional Inuit seal hunting was captuusiohg shape from silhouette with dynamic
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Figure 4.2: Two renderings from Maya that mix dynamic tegtlipbjects captured from images
with conventional hand modeled objects.

textures. The resulting models were then combined withittoadhl geometric models in Maya and

animated to tell a historically interesting story [17]. Aréractive informational website, and a short
movie were created using this technology. Figure 4.2 shawsénderings from this project show-

ing some carvings captured using our system, and placedistene with conventionally modeled

background objects.
4.7 Experiments

Here, we describe a few experiments which test the dynamtareindependent from the other

components of the system presented in this thesis.

4.7.1 Light Variation

Figure 4.3: A face lit using a dynamic texture with five basimges.

A set of images with different known lighting directions da@ acquired using a hemispherical
contraption with flashes mounted at various positions. Bychyonized triggering of the flashes and
a single camera, images with many different lighting cdondg, and identical viewing conditions
can be captured in a matter of seconds. Using a set of imagased with such a device, we have

built a dynamic texture parametrized in lighting directi@ince light variation is easily represented
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by a basis, the renderings shown in Figure 4.3 are generaieg only 5 basis images, even though
there were more than 60 sample images. The renderings weeeaged in real time very efficiently,
requiring only two 3-component dot products and one additier pixel (possible in a single pass

even in most hardware with two texture units) The basis imagel mean image are shown in Figure

4.4.

Figure 4.4: The dynamic texture basis used for lighting #eefin Figure 4.3. The mean is shown
in the upper left. Other elements scaled so that black is kitevis +1 and gray is O.

4.7.2 View Variation

The wreath shown in Figure 4.5 is nearly planar, but has sntaltate details that could not possibly
be captured by a simple planar texture map. We have computgakamic texture parameterized by
viewing direction, and compare the results to simple textanapping.

To build the dynamic texture, first, we warp the set of samplages to a set of square tex-
tures using the 4 corners of a rectangle surrounding thetiwighich were marked with stickers.
This warp is achieved accounting correctly for perspedigtortion by using projective homogra-
phies. once we have all views in this common texture spac@enerm the PCA on the textures to
compute the dynamic texture basis.

Figure 4.5 shows renderings from three different viewsgibioth simple texture mapping, and
view dependent dynamic texture mapping. The wireframe Isoshibwn in the figure simply to
illustrate the viewing direction, only a single quadrilaties used in the actual rendering. Itis clear,
especially in the view on the far right, that the dynamic tegtrenderings are much more natural

looking.
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Figure 4.5: Texturing a rotating quadrilateral with a wreatop: by warping a flat texture image.
Bottom: by modulating a dynamic texture basis which is thanpgd onto the same quad

We have found that although representing view dependenigy basis modulation is possible,
it becomes inefficient when the range of views is very largeparticular, this problem relates to
how textures are warped from sample views into a common texdpace. When a view is at a
nearly grazing angle to a polygon, there will be very few skmfor the texture on that polygon,
and when it is warped into texture space, it will generaterg béurred sample. The result of this
effect is that even if the object being captured is in factrgewically planar, an image basis will
be computed which incorporates the effect of blurring tixéutes at grazing angles. Although there
will be no visual artifacts caused by this, when combinedhwéixture variation caused by parallax,
a larger basis is required than one would need for paraltaxealln addition, basis modulation can
only account for a few pixels of parallax, but when viewedra grazing angle, any out-of-plane
variation in depth can be made to generate a very large atimslof features in texture space. For
this reason, we suggest that displacement mapping, whickillvdescribe in Chapter 5, is much
better suited for representing significant magnitude petalaused by approximate geometry (or
what we elsewhere refer to as meso scale structure). Howamauiring dynamic textures is very
simple and convenient, which in some cases outweighs tfffiicieacy just mentioned, making their
use for representing meso scale structures somewhat niaetiae. This issue could be somewhat

improved with some modifications to the acquisition strgteghich are discussed in Section 7.1.
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Chapter 5

Displacement M apping
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Displacement mapping is a surface representation wheexisbiare coarsely modeled with a
conventional geometry, and fine details are representddandtisplacement function giving a dis-
placement to the true surface from each point on the refersmdace along the surface normal [9].
Displacement mapping is used in our model to represent nuade details.

Various more approximate methods are available for repteEggmeso structure. With bump
mapping, the surface normals are modified buep mapaffecting only the lighting of the surface
[2]. Parallax mapping roughly approximates parallax byuatlipg texture coordinates along the
view direction [55]. Displacement mapping, in comparisaogurately renders parallax and self
occlusion, as well as lighting when combined with a bump nmameur system, a dynamic texture.

We have developed a novel algorithm for rendering displasgmaps using modern graphics
hardware, which will be presented in this chapter. Althowghhave designed this model in the
interest of making it both easily rendered and captured fimages, we have thus far focused on
the rendering and not implemented or developed any algorithich captures displacement maps
from images given a macro scale geometric structure. Sa@®B88&cl for further discussion on this

topic.
5.1 Previous Work

The concept of displacement mapping has existed for quiteegome. Since Cook introduced the
idea in 1984, [9] techniques for rendering them have beetviegpcontinually. Traditionally, dis-
placement maps have been rendered by uniformly subdivieiie polygon into micro-polygons,
and displacing the newly created vertexes using the displaat map [10]. In both ray-tracers and
real-time systems, these high polygon counts lead to mefvenmgwidth inefficiency, and high ge-
ometric transformation costs, which limit performance ekvoday, offline renderers still use this
method as it is easy to implement and speed is not necesaarigsue. Hardware has recently be-
come capable of uniform subdivision displacement mappjnallowing vertex programs to sample
from textures (an input to the vertex program from textureada Figure 2.1). However, since it
is possible for an object to extend from near the viewer tdrfan the viewer - a ground plane for
example - uniform subdivision becomes either inefficierinaccurate: either distant surfaces have
many triangles smaller than a single pixel, or near surfaege noticeably coarse resolution.
Adaptive geometric subdivision becomes complicated diigieer resolution parts must connect
to lower resolution parts without forming cracks in geope®ther difficulties include noticeable
popping when mesh resolution in an area changes as the caroees. These problems have been

well-researched in software systems [34, 15] but due to ¢heptexity of the problem, adoption in
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hardware has not been widespread.

Some image warping algorithms have been adapted from irhaged rendering research for dis-
placement mapping. Relief textures [44] is an implemeatatrhich is suitable for hardware. How-
ever, image warping only usually applies to images with kdept displacement mapped planes. Re-
lief textures have recently been generalized to cylindes§ put generalization to arbitrary meshes
would be difficult.

Both geometric-subdivision-based algorithms and imagmet algorithms perform forward map-
pings: geometric methods create triangles and then prijent onto the screen, and image-based
methods directly warp images with depth onto the screenaRFmgment shader based technique,
we need an inverse mapping, which determines which parteofitometry is visible at each frag-
ment. Some approximations of this form exist, such as macatlapping [55], but the only way to
get geometrically accurate inverse displacement mappiby ray-tracing.

Displacement maps have also been directly rendered irnraajny, using iterative root-finding
methods [22] in software rendering. In older hardware, teefcagment programs, slicing planes
were used which approximate ray-tracing by sampling atréisgoints a rendering pass for each
sample [13]. Now, programmable fragment processors argnhieg to be used for ray-tracing.
View-Dependant displacement mapping precomputes alifpessy intersections, and looks them
up at render time, using large amounts of texture memory [845st like our approach is the sample-
based ray-tracing of displacement maps in [23]. Howevarnoethod uses a different method for
determining exact ray entry and exit points, takes more thdre as many samples per ray, and
achieves higher frame rates.

Fragment-based solutions benefit from automatic level tfid@OD): far or small parts of an
object that appear small on the screen, contain less fragmemdering more quickly, and large
or near parts render more accurately. In comparison, acigdtis type of LOD geometrically
would require adaptive tessellation, which is complicateémplement and not available in most
hardware. In addition, fragment based algorithms benefihfearly Z rejection which completely

avoids processing already occluded fragments.
5.2 Algorithm

We assume that displacements are between 0 and some maxieptimadlled the displacement
scales. Displacements are stored in a grayscale texture imageeléthents in0, 1], where the

actual displacement istimes the value stored in the displacement image.
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5.2.1 Planar Displacement

Here, we make some constraining assumptions which sintplfyproblem, and in Section 5.2.2 we
will show how to transform the general case into this casea®¥éime that the reference surface is
planar and rectangular. We also assume that its texturelic@des form a rectangle in texture space.
This gives us a simple linear transformation between wqgskite and texture space. It also allows
us to simply reject intersections outside the texture spactangle to get correct silhouettes.

From the reference plane, we generate a volume which we allltlte displacement volume
in object spacé/, and the corresponding volume in texture spgeV, is the volume created by
sweeping the reference plane a distance along its normallV; is the 2D texture rectangle of the
plane, swept along a 3rd axis from 0 to 1. The transformatiatrimthat transform§/, to V; will
be called)M ;.

The displacement volume is rendered as six quadrilater@penGL. View rays are first trans-
formed into object space, and then transformedifiy into texture space. The texture space ray
origin and direction are interpolated and passed to a fragpr@gram. At each fragment we sam-
ple the displacement map &t discrete points along the ray through the displacementwelw is
chosen based on the number of texture accesses availalddicufar hardware, and the complex-
ity of the surface. This type of sampling is used since texsamples whose location depends on
the results of previous samples (such as in standard itenatot-finding techniques) are expensive
and limited in current graphics hardware. Sampled disphece valuegl; are compared to the ray
heightsh; at each point to determine which side of the surface the rag & each sample position.

view ray secant line

reference surface ™S

displacement

1 i-17 NA

Figure 5.1: Algorithmid, are shown in blue}; in green, and the intersection point in red

We take the interval between the sample nearest to the vigwehereh; > d; and its neigh-
boring sample;j — 1, to contain the intersection of the ray with the surface (Sgerre 5.1). The
surface is then approximated by the secant line figrto d;_;. Finally, we calculate texture coor-
dinates, which are used to index texture and normal mapkeastersection of this secant line with
the view ray.

In comparison, using the position of sampl® index texture and normal maps texture coordi-
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nates, rather than performing the final step, will generegealts equivalent to volumetric slicing, as

in [13], but with a single rendering pass.

5.2.2 Arbitrary Meshes

In the planar case, in order to render silhouettes accyratelassume that any intersections outside
of the plane’s rectangle in texture space are not on the pderkdon’t render them. This assumption,
along with the assumption of planarity, must be removed @epto support arbitrary meshes.

There are two problems when generalizing this algorithnrstFexact entry and exit points
are required for rays intersectiig (the volume generated by displacing a single triangle by the
maximum displacement). Second, finding a linear transftomahat maps rays iV, into the

corresponding volume in texture spadg:

==

Figure 5.3: A dis-

) _ placement volume _. ) i
Figure 5.2: A dis- in object space Figure 5.4: A displacement volume in
placement volume assuming spheri- object space assuming linearly inter-
In texture space (tri- cally interpolated polated normals, shown shaded on the
angular prism) normals. right t(? emphasize that the volume is

curved.

But what do the volume¥, andV; look like? V; is a triangular prism defined by the texture
coordinates of the current triangle, with a depth of 1 as shimwFigure 5.2.V,, is more compli-
cated. If we were to assume spherical interpolation of ntgras displacement mapping is usually
implemented in software renderers with geometric subidiris we would get the volume shown
in Figure 5.3. It would be very difficult to compute entryfepbints into such a volume, and there
is clearly no linear mapping from this curved volume to amprigcor simplicity, we must assume
linear interpolation of normals, which generates the vawshown in Figure 5.2.2. Although two
of the boundaries are now planes, the other three boundariks volume are curved bilinear sur-
faces. Intersecting rays with those surfaces would stitbbecomplicated, and there is still no linear
transform between this volume and a prism. Now we choosepooapnateV, by subdividing it
into volumes with planar boundaries, and for which therstsx linear transformation into texture
space. We subdivid®; into three tetrahedrons, and we approximgjeby three corresponding
tetrahedrons. In a connected mesh, we must assure thaboeigi displacement volumes are split
into tetrahedrons along the same edges. This can be donky siyneordering all triangle vertexes

in order of their index into the vertex array as shown in Haet al. [23].
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Where our method differs substantially from the tetrahledaderer in [23] is in how we calcu-
late entry and exit points through the tetrahedrons. Nowehah tetrahedron has a linear mapping
to texture space, we compute entry and exit points of eaclvyaimple line/plane intersections.
We simplify this further by performing the intersectionsaixis aligned tetrahedron space where the

fourplanesare =0,y =0,z=0,andz +y+ z = 1.

Detailed Algorithm Overview

Initialization:
e generate three tetrahedrons for each triangle
¢ build transformation matrices from object space to tettabie space
¢ build transformation matrices from tetrahedron spacextute space

Rendering:

e render all four triangles of each tetrahedron passing xgrosition and both matrices to the

vertex program.

e The vertex program computes the ray entry point and dired@titetrahedral space and texture

space, these are interpolated linearly over each triamgi@assed to the fragment program.

e The fragment program intersects the ray, in tetrahedralspeith the the planes of the tetra-
hedron. The nearest positive intersection parameter isezthfignoring the intersection with

the face being rendered). This parameter is then usedIgizecthe ray in texture space.

Sample points for the ray-tracing algorithm are computed as

1
P1L=T%q* g

Pit1 =P; + 71

Here N is the number of sampleg; is the ray entry point in texture space,s the ray
direction in texture space, amds the exit point intersection parameter. Using these sampl

points, the rest of the ray-tracing algorithm proceeds ag/gtin Section 5.2.1
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5.3 Displacement Mapping for LOD

Since the performance and accuracy of this algorithm depdindctly on the the number of frag-
ments rendered, level of detail (LOD) is automatic: partshaf object appearing larger on the
screen are rendered in more detail. This makes this methefdider LOD of any object, not just

ones which would be naturally displacement mapped (suchi@swalls). This can be achieved by
precomputing a displacement map and bump map given a loygpoland a high-polygon version

of the same object.

Figure 5.5: A smooth sphere rendered as a low detail spheseaadisplacement map.

Most current game engines already use similar techniquaspating bump-maps to make a
low-polygon model look almost as good as the high-polygaisiea. However, a common com-
plaint is that the silhouette of the object clearly showdderesolution of the geometry when bump
mapping is used. Using true displacement mapping gives iggtter quality including correct sil-
houettes and parallax effects. Some example renderingsralgorithm being used for LOD are

shown in Figures 5.5 and 5.9.

5.4 Improving performance
54.1 Early Z Regection

The performance of our technique is bound by fragment psicgs Many fragments may be oc-
cluded, and do affect the final image, but are processed angiefaending on the order they are
rendered. Modern GPUs can discard fragments before rutiménfgagment program if the contents
of the depth buffer indicate that they are already occludédls means that it is in our best interest
to render scenes from front to back in scenes with high fragmegram costs. Sorting polygons,
or just tetrahedrons, can save us from this overdraw proldbemintroduces extra CPU and band-

width load. For opaque objects, another solution is to spmghder the reference object - just the
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original low-resolution triangles, not the extruded voksn into the depth buffer before rendering
the displaced volumes with the expensive ray-tracing shadhés achieves a similar speed improve-
ment without the CPU and bandwidth hit. Note that early zatsj@ optimization requires that the

shader does not compute the displaced depth value; thisswimdk unless it is necessary for the

intersections of objects to be rendered accurately.
5.4.2 Tight Fitting Displacement Volumes

In our formulation thus far, each displacement volume haslextruded by the same distance along
the object’'s normals. Depending on the displacement maphaessellated resolution of the mesh,
all displaced volumes are not likely to contain actual dispiments over the full rande, 1). We
can optimize displaced volumes by checking the minimum aagimum displacements for each
triangle given a certain displacement map. Fitting the ldisgment volume to actual minimum
and maximum displacements will improve both performanad arcuracy. Ray-tracing through
tighter bounding volumes means more accurate ray tracgujtse since the same number of samples
are taken over a smaller distance. In addition, smallermeki means that fewer fragments are

processed, particularly at grazing angles.

Figure 5.6: A displacement mapped object with full size Bispment volumes on the left, tight
fitting volumes on the right.

There are cases where the accuracy and performance impeate@are noticeable. Notice the
horizontal line in near the center of the sphere in Figure $t6s not straight on the left due to
sampling aliasing but in the optimized case it is renderedectly. LOD displacement maps, as in
Section 5.3, commonly contain a large range of displacesn@rdr the whole object, but not nec-
essarily all in a single triangle. Therefore, LOD displaestrmaps often benefit from performance
increases with tighter displacement volumes. For the miodeigure 5.6 we have measured frame

rate increases approximately 65% when using tight fittisgldicement volumes over full size ones.
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5.4.3 Variable Sampling Rate

With shader model 3.0 hardware, looping support and canwits provide us with the possibility
of taking a variable number of samples depending on the raysREhat are nearly normal to the
surface are vertical in texture space and require few sanays that are nearly parallel to the
surface polygon are horizontal in texture space and requnoee samples. ldeally, one sample
would be taken for each pixel in the displacement map thataperosses (when projected on the
the texture); this would eliminate all aliasing. This coblel achieved by separating sample points
by a uniform distance in the 2D texture plane (1 pixel sizadher than taking a uniform number
of samples. This would reduce aliasing at grazing anglegrevimore samples are needed, and
improve efficiency in direct views. The number of samplegtager fragment would be spatially
coherent, which is required for current hardware to acjuathieve a speed improvement since a
group of fragments renders only as fast as the slowest fragriiée have not yet implemented this

method, but it seems that it should improve performancecaupl/ality.

5.4.4 Silhouette Displacement Mapping

Figure 5.7: True displacement mapping is shown on the Iefthe right, only the silhouette regions
are displacement mapped, the center is simply bump-mapped.

We have tested a more drastic optimization, that we calbaiite displacement mapping, which
applies full displacement mapping only to polygons neastl®uette of the object. Other polygons
receive only bump mapping. With geometric-subdivisiosdzhmethods, this would be difficult,
requiring adaptive tessellation to line up the detailed péth the coarse part. With our method,
we simply reduce the displacement scalaway from the silhouette. Whereis zero, we render
only bump-mapped triangles. Parts wikmon-zero are near the silhouette and render with full

displacement mapping.
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5.5 Reaults

Our algorithm has been implemented using OpenGL with ARBexeprogram and fragment pro-
gram extensions. The algorithm will run on a wide variety afdware (anything supporting
ARB_vertexprogram), but has been tested primarily on Radeon 9700/§&Gthics cards. Perfor-
mance results given here were measured on a Radeon 97@0iRHO0+ system in a full 640x480

window.

Figure 5.8: Results of the planar displacement mappingigfgo: upper right object is made from
Six dlispllacement mapped planes rendered in four passessatre rendered in a single pass with a
single plane.

For the planar algorithm we have been able to get 15 samplesapdefore running out of
resources (we are limited by ALU instructions) using ARBgmentprogram. To achieve higher
sampling rates, multiple rendering passes are performed.sihgle pass planar algorithm gets up
to 150 fps in with every pixel in a 640x480 window being pramss Results are shown in Figure
5.8.

Figure 5.10 shows the results of first (on top) rendering & displacement map directly on
an approximate sphere, and second (on the bottom) blenting®D displacement map used for
Figure 5.5 with the rock displacement map to create a muclomoresult.

In the generalized algorithm we were able to take 11 samm@esqy, with the added overhead

of computing ray entry and exit points. Not that this is sfigaintly more than the 4 samples that a
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previous algorithm took [23]. Frame rates vary from modehidel with the generalized method,
since there can be a lot of overdraw. The face model shownguar€&i5.9 renders at 45 fps with.
the spheres in Figures 5.10 and 5.5 render at minimum 40 fo¥y E rejection gives the following
improvement: with no sorting we get 25 fps for the sphere guké 5.10; pre-drawing to the depth
buffer increases the frame rate to 36; sorting tetrahedrmmeases the frame rate to 40.

The algorithm proposed here can render displacement mapaeds and arbitrary objects us-
ing fragment processing hardware. The method we have tescis more efficient than previous
methods. It is useful for both planes and arbitrary objemtd, has also been shown to work well for

level of detail rendering.
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Figure 5.9: Level of detail rendering with disEIacement piag. Two views of an object rendered
with our algorithm. The overlay on the right shows the cogesametric resolution of the base mesh.
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Figure 5.10: A coarse sphere displaced by a rock displacemap on the top, and combined
LOD displacement map and rock displacement map on the botimte how the bottom sphere is
smoothly curved while the top one has a more polygonal shape.



Chapter 6

Systems and Experiments
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We have developed two systems for acquiring and renderifigreint types of hierarchical
graphics models. The first uses triangle meshes for the nsaate, and represents both the meso
and micro scale with a dynamic texture. The second systemrefgesents the macro scale using
a triangular mesh. However, in our second system the mes® isc@presented separately with a

displacement map, and only the micro scale is modeled usitygpamic texture.
6.1 Dynamic Textured Geometry

We have performed many experiments using dynamic textaresmbination with rough polygonal
meshes. Considering that the geometric information aeduiy the methods described in Chapter
3 are often inaccurate and sparse, dynamic textures paedpeet in view direction can be used
to account for small scale geometric inaccuracy (meso sdal@ddition, the dynamic texture will
reproduce complex surface reflectance (micro scale). tinfately, in this case, the meso and micro
information are linked, and both only parameterized in viésection, meaning the light cannot be
made to move around independently of the view (but can pietgntnove with respect to the object
when the view changes if that is how the object was capturddjvever, a more elaborate setup
with a rotating camera, and an array of lights could be usedé¢ocome this problem in the future.
Objects modeled in this way are rendered in graphics haellwgrmodulating the dynamic
texture basis, as described in detail in Chapter 4. We hapéeimented two types of geometry
acquisition in our experiments, structure from motion, ashdpe from silhouette. The separate

acquisition systems and results with the two methods witlétailed in the following subsections.
6.1.1 Structurefrom Motion

SFM acquires geometry based on corresponding featurd@usibver many views. In order to
get the feature correspondences, we use tracking. Textegézhs are tracked using the XVision2
tracking libraries which provide very useful and efficiel@[Btrackers [30]. These trackers work
best on textured regions that are locally unique. We havieifes manually selected by the user,
since trackable regions are often sparse and we preferde filam in strategic places for modeling
purposes, such as the apex of a roof for example.

After the user identifies several features in the camera wiee target object. Then, from the
live video stream, we track the locations of these featuresal-time. We record the video stream,
along with the feature positions while the user rotates tjeat through various viewing directions.
We make the simplifying and restrictive assumption thatraltked points are visible in all video

frames.
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Using the tracked feature positions from many differentweiewe can compute a rough 3D
structure using methods described in Section 3.1.
Early experiments, such as the flower in Figure 6.1, use atpaiynamic textures for each

guadrilateral. Each one is warped from each frame of theovs#gjuence, to a square textures.

Figure 6.1: A flower rendered with a very simple geometry afrfquadrilaterals (shown on the
bottom right), each dynamic textured with respect to vigpdirection.

In more recent experiments, such as the house shown in FigBirenemory usage was signif-
icantly reduced. First, we use only a single dynamic textdree mapping from image space to
texture space is defined by assigning each vertex a textordioate, which we generate automat-
ically as the vertex’'s average camera space projectiont Af¢gangles is generated for the model
using Delaunay tessellation of the texture coordinatespatentially edited manually with our GUI
shown in Figure 6.2. Each view is warped to texture space fiiyeafvarping of the pixels in each
triangle. Additionally, the dynamic texture is computedridV color space as described in Section
4.3, further reducing memory requirements by allowing mtbnumber and resolution of U and V

basis elements.
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Figure 6.2: The system built for viewing and editing trackahata.
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In our system, the camera or object could be oriented by heogever, the best results were
obtained using a tripod and stick to orbit the camera arobeabject. This setup achieves uniform
sampling (if the tripod is moved smoothly), and also keepsabject centered in the camera view,
which is essential for the structure from motion algorithifter tracking feature points, the sys-
tem allows the user to interact with the data in order to piséiy identify and remove or correct
inaccurately tracked features. Figure 6.2 shows a screensthe system'’s user interface.

As can be seen, in extreme cases, such as the flower in Figura 6omplex and intricately
detailed object can be represented with very few polygoriseaexpense of a large texture basis.
The polygonal mesh for this flower contains only four quadeitals. However, this puts a heavy
weight on the dynamic texture to account for very large geamimaccuracies. It was necessary, in
this case, to use 100 basis images for rendering, and kdggiartifacts were still present.

The house shown in Figure 6.3 has a more reasonable geostetigture, but still requires a
fairly large basis (50 to 100 elements). In addition, ourstoained capture setup which requires the
visibility of all feature points in all video frames, ressiin fairly small possible variation in view-
ing angle for most objects. The next subsection describgstara which acquires more accurate

geometry and allows larger variation in viewing direction.

(I;_igure_z 6)3: 4 new views of a house rendered with dynamic test(parameterized in viewing
irection

6.1.2 Shapefrom Silhouette

To capture geometry using shape from silhouette, we firsglae object on an automatic turntable.
Using a stationary camera, we take a set of images from vievesring around the object. We may
move the camerato get a second or more rings of views frorardifit heights. A calibration pattern
on the turntable is used determine the camera’s positiorogadtation with respect to the object.
A colored piece of paper is mounted behind the object for usenvdetecting the silhouette.

We have implemented the method described in 3.2.1 to seghreeabject from the background,
giving us a silhouette image. Using the segmented imagejngpiementation of the marching

intersections SFS algorithm described in Section 3.2.2impemented to compute the visual hull.

52



As in the SFM case, we apply a view-dependent dynamic texeuttee resulting geometric model
to account for its inaccuracy. However, applying the dyreaexture is slightly more difficult since

we have a much larger range of views, and a closed mesh.

Figure 6.4: Texture atlas: on the left is a rendering visiradj the different charts on the object; on
the right is the texture atlas.

Proper behaviour of our system depends on computing a eoagomapping from each point on
the object’s surface into a 2D texture image. We represéntitapping by a 2D texture coordinate
stored along with each vertex, and linear interpolatiomimieach triangle. Computing such a set of
texture coordinates for a general mesh is a very difficulbfgm. This problem was solved easily in
the case of SFM in Section 6.1.1 where observed views wetrécted to a small range. However, in
the case of SFS, we have an arbitrary polyhedral mesh, wldathines a much more general method
for automatically generating texture coordinates.

The method from Levy et al. [32] was implemented, and workBaently well. This method
breaks a polygonal mesh inthartsusing a region growing algorithm. The algorithm segmengs th
mesh into the desired number of charts preferring to sphih@lregions of high curvature. Each
chart is then flattened into 2D using conformal mapping. ©Gaon&l mapping preserves angles so
that the error between the three angles of each trianglinriespace and the same triangle in 3D
is minimized (in the least squares sense). We have also imgpited a version which uses multi-
dimensional scaling (MDS) as described in [60]. MDS worksikirly, minimizing the error in
distance along the surface of the 3D mesh to distance in 2Dregpace; results are comparable.

All of the charts are then packed together intteature atlas Packing is performed using a
greedy algorithm, ordering the charts from largest to sesallFigure 6.4 shows an example where
the texture atlas is shown next to the object with chartsredloiniquely.

After texture coordinates are generated, warping the elawmigws into texture space requires
an extra trick. Some parts of the model are occluded from sdeves, so we cannot simply warp
triangles from the camera views into texture space. We oveechis using a depth buffer. For each

view, we generate a depth image where each pixel represendepth from the camera to the visual
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Figure 6.5: Two views of a pig rendered with viewFigure 6.6: A scene with several dynamic textured

dependent dynamic textures. objects (10 dynamic textures in total)

hull. We then warp this depth image into texture space. Ndvemwe warp the actual image pixels
into texture space, we interpolate the actual depth of eadlex relative to the camera across each
triangle. So, at each pixel in the texture, we know the depthat point on the geometry, and we
know (from the depth texture) the depth that the pixel we atemqtially placing there has. If they
are not the same (to some tolerance) that element of the¢dstaccluded. After marking occluded
areas in the texture for each view, we fill those parts in with inean value as computed over all

views where that part was visible. In this way, we can use glsidynamic texture even though

parts of it are not visible in every view.

compute view direction (:I)[J

for (channel = 1 to 3)
{
Set color matrix row[channel] to
fragment program constant

for (elem=1 to BasisCount [channel]/16)
{
Sample interpolation table and
set to fragment program constants
Draw geometry

GPU

Vertex Program

,°Transf0rm vertex position to
camera space

.

Fragment Program

*Blend 16 basis elements
*Multiply result by color
transform vector

;

Frame buffer blending
*Add to frame buffer

Figure 6.7: Algorithm overview for rendering geometry witiinamic texture
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After this warping step, the computation and rendering efdiinamic texture take place in the
same way as described in Chapter 4. An overview of how theeramgl algorithm is executed on
the CPU and GPU is given in Figure 6.6. An example object aaptwith this system is shown in
Figure 6.5 and a scene filled with several objects is showngare??. On a 3.2 GHz CPU with
NVidia GeForceFX 6800GT graphics accelerator, the pig rhoeteders at 115 fps, and the scene

with several dynamic textured models (a total of 10 dynammtures) renders at 35 fps.
6.2 Geometry, Displacement Mapping, and Dynamic Texture

This thesis is focused on the rendering aspects of graphaceis, and since an implementation of
this type of algorithm was not readily available, we havedusther methods in order to test the
integrated rendering system. Ideally, we would like to us& $r SFM, in combination with an
algorithm which computes displacement maps from imagels asdhe method recently proposed
by Vogiatzis et al [53].

The geometry and texture have been captured in independpst &irst, very detailed geometry
was captured using a laser scanner. Using 3D modeling s&ftwe performed post-processing on
the detailed geometry to compute a low-polygon model ancesponding displacement map.

Then, the dynamic texture part of the model was acquiredratgig and aligned manually with
the geometric model. To acquire lighting variation in a dyiatexture, we mounted the object and
camera rigidly on opposite ends of a rod. Next to the objeaineeant a matte sphere, and the rod is
attached to a rotating tripod as shown in Figure 6.8.

Camera

Object

Sphere

Figure 6.8: The apparatus used for acﬂl?égu%e 6.9: Example images taken as shown in the adjacent

quiring light variation

Placing the apparatus in natural, directional light (fréma sun), we rotated the tripod manually

in a grid pattern, while capturing many images. Some exarnpéges are shown in Figure 6.9.
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After sampling the images, the user identifies the spherssingle image.

7k i
A

2
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S

Figure 6.10: Four views each with four different lightingsaadisplacement-mapped and dynamic-
textured Korean face mask from the Shilla period.

The light direction is calculated in each image by solvingnapde set of linear equations. We
can compute the normal of each pixel in the sphere, and theising the standard diffuse lighting
equation, we relate the normal and pixel color to the lighdtteeby the standard diffuse lighting
equatiorc = n e [ + a, wherec is the pixel brightness; is the pixel normalj is the light direction,
anda is the ambient light. With many pixels, a system of equatigrauilt and solved fot anda.
Using the light direction as a parameter, we compute a dymtaxriure as described in Chapter 2.

A ceramic mask and a model house made from natural wood, &@&rkyere captured using this
method and the resulting renderings are shown in Figuré&sahd 6.13, respectively. The algorithm
used for rendering, and how itis mapped to the CPU and GPWisrsin Figure 6.11. The examples
render at approximately 100 fps in a 640 by 480 window usingdiMGeForce 6800GT graphics
hardware and a 3.2GHz CPU.

Representing lighting variation requires very few baserants. In both the house and face
examples, only eight grayscale basis images were used,@bdsis images were used for color

information. The first four basis images are shown in Figul®6The hardware rendering imple-
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mentation for only 8 basis images requires only three texacesses, two dot products and two
additions, which allowed it to easily be inserted into thepthcement mapping fragment program
in place of the standard lighting computation. This alloles tomposite rendering to take place in
a single pass, and achieve performance approximately &mtre displacement mapping code with

standard bump-mapped lighting.

Initialization:
*Build tetrahedrons from low res mesh

*Load displacement map as texture
*Load dynamic texture basis and interpolation tables as textures

Y

sUpdate light direction and camera position ~ CPU
*Set light direction fragment program constant

*Set camera matrix vertex program constant

*Submit rendering call

GPU

v Vertex Program

*Transform vertex to camera space
*Transform view ray to texture space

Fragment Program

*Compute ray entry and exit points
*Sample displacement map
*Compute intersection point
*Sample dynamic texture basis
*Sample interpolation table
*Modulate basis to compute color

Figure 6.11: Algorithm overview for rendering geometngmiacement map, and dynamic texture.

Figure 6.12: First 4 basis images (of 8) used for lighting fdme artifact. Intensities have been
remapped so that black is -1.0, gray is 0.0 and white is 1.0.
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Figure 6.13: Four views each with three different lightings displacement-mapped and dynamic-
textured model house.
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Chapter 7

Discussion
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7.1 Future Work

7.1.1 Geometric Capture from Images

The system shown in Section 6.1.2, which captures objeatg sbape from silhouette and view-
dependent dynamic textures, is based completely on 2D ispagel is therefore quite easy to use.
However, the system used for acquiring geometry, displacemaps, and dynamic texture in Sec-
tion 6.2, additionally makes use of 3D input for acquiringglacement map data. Future work
would be to compute displacement maps from images given iogimate geometry. Some work
has been done on this problem by making use of the parallaxeleetmultiple views [53]. In ad-
dition, such a method should be incorporated into a systeay eaough to be used by people not

trained in computer graphics, like the system in Sectior?6.1
7.1.2 Displacement Mapping

The displacement mapping algorithm shown in Chapter 5 msnithea pixel shader on graphics
hardware. Recent advances in hardware allow texture azxesging vertex processing, as well
as hardware-accelerated geometric tessellation. Sirtbevbaex and pixel based methods for dis-
placement mapping in hardware are quite new, the perforemmahthese methods should be com-

pared, to determine which is actually most efficient usingjlable graphics cards.
7.1.3 Dynamic Texture

In this thesis, we have shown examples which use dynamigresfor representing lighting varia-
tion, and others which use dynamic textures for represgniiew-dependency. However, we have
yet to use dynamic textures for both effects simultaneotdigre are two reasons for this. First, it
is very time consuming to simultaneously capture many iightlirections and viewing directions,
since it would mean sampling a 4-dimensional function. &d¢cmterpolation of coefficients in two
dimensions is simple, but becomes complicated when the auofldimensions increase$ensor
Textureshave shown how different dimensions of variation can be reg¢pd using tensor mathe-
matics [52]. However, this requires that for each viewingediion there is a set of images for each
lighting condition, rather than a random collection of ilmagvhere each has a view and lighting
direction. This makes capturing such textures very diffiowthich explains why the examples in
their papers are made from computer renderings, and nosceaks. Allowing tensor texture like
separation, with more flexible inputs would be a very usaitdife result.

A problem which was pointed out in Section 4.7 is that wherua@g a view-dependent dy-

namic texture, we may warp some grazing angle views comigivery few useful pixels into texture
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space, and then end up unnecessarily simulating the megbltirred image during rendering. The
problem is that the current method solves for a basis thainmies the error between recomputed
texture images (after being projected onto the reduced basls) and the original texture images
for any view. The key to solving this problem is to realizettv@ do not care about errors between
texture images. The important error is the difference betwan original camera view, and the
recomputed texture for that view, mapped onto the objectpmopkcted onto that camera. A math-
ematical reformulation which minimizes this error woulcheve much better results with fewer

basis vectors.
7.2 Conclusions

We have presented a new graphics model based on a hierarshgle$ of detail. The model was
designed to balance ease of acquisition from images witbiefti rendering. The three levels of
detail - macro, meso, and micro - are represented usingjtaameshes, displacement mapping, and
dynamic textures, respectively. We have shown how this tncatebe rendered in real time using
current hardware graphics accelerators. Also, we havepted systems for capturing this type of
graphics model.

The low resolution macro scale was captured using imageebamdeling algorithms. Two
methods, shape from silhouette and structure from moti@revimplemented and described in
detail. Shape-from-silhouette proved more useful for wapg the full range of views of a small
object, while structure from motion is more useful for lasgpenes, where silhouette information is
not available.

For the rendering of the meso scale, a novel displacemenpimgaplgorithm was developed,
presented and tested. The method uses modern graphicsnatdway trace displacement-mapped
surfaces in real-time.

For the micro scale, we described dynamic textures, whiolrepresent a texture which varies
with respect to light or view direction. Several efficientdynic texture renderers were designed and
implemented on various levels of consumer graphics hamlw2ynamic textures parameterized by
viewing direction were used to represent meso scale steioitsome cases. Micro scale structure
was represented by dynamic textures parameterized indiggttion.

An easy to use system was built for capturing models with sHapm silhouette and view
dependent dynamic textures. These models are very easytoreabut have only two scales,
geometry and dynamic texture, and cannot be rendered wigtingelighting conditions. A plug-in

was developed for AliasWavefront’s Maya renderer which iearder captured objects of this type
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in scenes which can also contain traditional graphics nsodel

A second system was built for making the full 3-tiered mod&lsis system uses a laser scanner
to acquire the geometric structure, from which a low resotutriangle mesh and corresponding
displacement map are extracted. The lighting variationeeggured separately using cameras. The
final results can be seen in Figures 6.10 and 6.13.

These methods were proven useful in several experimentewbal objects were captured and
rendered. We demonstrated successful rendering of otbemfficult cases such as flowers and

other natural materials.
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